查詢結果分析
相關文獻
- 階層線性模式在教育縱貫研究上的應用: 以數學學習機會為例
- 階層線性模式在內屬結構教育資料上的應用:以數學學習機會為例
- The Distribution and the Effects of Opportunity to Learn on Mathematics Achievement: An American Perspective
- Trends of Effect Sizes of Learning Capital and Goal Orientation on Mathematics Achievement
- 學校教師因素對國三生數學成就之跨層次影響:考量參與數學補習的國中生個人因素
- 文化概念教學模式對國小學生數學成就、數學焦慮及數學態度影響之實驗研究
- Effects of Goal Structure on Elementary Students' Goal Orientations, Mathematics Achievement, and Intrinsic Motivation
- 大腦研究「學習機會之窗」論對認知和國小英語教學的啟示
- 原、漢學生推理思考差異之研究
- 影響國小兒童數學成就之自我調節學習與情感因素分析之研究
頁籤選單縮合
題 名 | 階層線性模式在教育縱貫研究上的應用: 以數學學習機會為例=An Application of Hierarchical Linear Models to Educational Longitudinal Study: A Case of Mathematics Opportunity to Learn |
---|---|
作 者 | 高新建; | 書刊名 | 臺北市立師範學院學報 |
卷 期 | 30 1999.03[民88.03] |
頁 次 | 頁127-148 |
分類號 | 520.31 |
關鍵詞 | 階層線性模式; 數學成就; 學習機會; Hierarchical liner models; Mathematics achievement; Opportunity to learn; |
語 文 | 中文(Chinese) |
中文摘要 | 縱貫研究是瞭解教柮現象變變情形的重要方法,然而長久以來,卻一直受劍觀念上、 測量方法、和研究設計等三方面缺失的影響,使得找尋能夠測得個人改變的充分測量和研究 改變有有效技術,一直是困擾著行為科學領域的重大問題。近年發展出來的「階層線性模式」 統計程式,能夠克服這些缺失,為縱貫研究提供了一個可行的分析技術。本研究首先指出階 層線性模式在縱貫研究上的五項優點:(1)描述各個體的成長軌線及其與啟始狀態之間的關 係;(2)不會受到「複對稱的假定」的限制;(3)資料不全並不構成分析的障礎,解決了一般常 見之缺失資料的問題;(4)不需要固冤的時間間距;以及(5)提供比傳統的最小平方法更為精確 的估計。其次,本文介紹階層線性模式在縱貫研究上的基本模式。接著,本研究以數學學習 機會及學生背景變項對數學成就的效果為例,採用階層線性模式的統程式,分析從美國「1988 年全國教育縱貫研究」公用版光碟片資料庫所抽取出來樣本資料,說明階層線模式在縱貫研 究上的基本概念、及其在縱貫資料上的應用。 |
英文摘要 | Longitudinal study is an important research approach to explore changes over time in behavior science. However, research on change has been plagued by inadequacies in conceptualization, measurement, and design. The development of hierarchical liner models (HLM) now offers a powerful set of techniques for research on individual change. This study first pointed out five advantages of using HLM approach in studying individual growth: (a) it describes each indivdual's growth trajectory and its relationship with initial status; (b) it is not restricted by unrealistic compound symmetry assumption; (c) it solves the commonly observed problem of missing data; (d) it does not require fixed time intervals; and (e) it provides more precise estimation than the traditional ordinary lest squares approach. Then, basic models for HLM approach in longitudinal study were presented. Applying concepts and computing pogram of HLM to analyze a subsample drawn from the "National Education Longitudinal study of 1988" public use CD-ROM data set, this study presented concepts, features, and advantages of HLM over longitudinal study by investigating the effects of mathematics opportunity to learn and students' study by investigating the effects of mathematics opportunity to learn and students' background factors on their mathematics achievement. |
本系統中英文摘要資訊取自各篇刊載內容。