查詢結果分析
相關文獻
- Direct Simulation Monte Carlo of Monosilane Low Pressure Chemical Vapor Deposition
- 從活性離子蝕刻所產生的破壞和污染對低壓化學氣相沉積反應器中選擇性鎢金屬沉積之影響
- Improved Current-Voltage Characteristics on Four-Terminal GaAs and GaAs/InGaAs/GaAs Field-Effect Transistors
- 氧化層厚度在矽晶元件上之研究
- 梅雨季伴隨豪雨之中尺度低壓個案研究
- 低壓化學氣相沉積應用技術
- 透明導電膜製程設備之整合電控技術
- Growth Kinetics of Chemical-Vapor-Deposited Pb(Zr戓,Ti[fec5])O[feb0]Films from a Pb(C[feaf]H忦)[feb2]/Zr(O-t-C[feb2]H状)[feb2]/Ti(O-i-C[feb0]H乣)[feb2]/O[feaf] Reaction System
- 透明導電膜製程設備之整合電控技術
- LPCVD氧化鋅摻雜鎂,能帶改變及結構變化之探討
頁籤選單縮合
題 名 | Direct Simulation Monte Carlo of Monosilane Low Pressure Chemical Vapor Deposition=蒙地卡羅分子模擬法模擬矽甲烷低壓化學氣相沉積 |
---|---|
作 者 | 徐啟中; 李良倫; 蔡大翔; | 書刊名 | Journal of the Chinese Institute of Chemical Engineers |
卷 期 | 29:6 1998.11[民87.11] |
頁 次 | 頁427-435 |
分類號 | 460.02 |
關鍵詞 | 蒙地卡羅分子模擬法; 矽甲烷; 低壓; 化學氣相沉積; Silane CVD; High silane; Silylene; Molecular simulation; DSMC; |
語 文 | 英文(English) |
中文摘要 | 我們以分子模擬方法分析,兩片4吋晶圓,間格5釐米的空間內,溫度973K、壓力0.1、1、10 Torr下,矽甲烷化學氣相沉積。氣相反應方面考慮四個反應步驟,其中第一步矽甲烷分解成SiH₂與氫的步驟,作詳細的反應動力模擬;表面反應方面包括SiH₄、 SiH₂、Si₂H₆、Si₃H₈ 四個的沉積反應。矽甲烷的附著係數在所有成膜分子中最低,是矽甲烷化學氣相沉積享有均勻沉積厚度的主要原因, Si₂H₆、 Si₂兩者的附著係數均高,是厚度不均勻的貢獻者。模擬結果顯示,當壓力由0.1增至1 Torr時,發生有趣的Si₂H₆、SiH₂兩者角色互換,當矽甲烷壓力低時,SiH₂更可能碰撞晶圓而沉積,它在沉積速率所佔的份量高於Si₂H₆,但是,當壓力高時,SiH₂傾向於插入SiH₄或 HH₂生成Si₂H₆或SiH₄,因而Si₂H₆取代SiH成為沉積厚度不均勻的主要貢獻者。 |
英文摘要 | Chemical vapor deposition of monosilane between two 4-inch wafers with 5 mm wafer spacing is simulated at molecular level under 973 K and 0.1, 1.0, 10 Torr. Four gas-phase reactions are considered, with a detailed reaction kinetics simulation on the first decomposition step of SiH₄ to yield H₂ and highly reactive SiH₂. Also four surface reactions of SiH₄, SiH₂, Si₂H₆, Si₃H₈ are included in simulation. Monosilane, with its lowest with its lowest sticking coefficients among film-forming species, is the major reason for thickness uniformity over large area in silane CVD. Si₂H₆ and SiH₂, both of higher sticking coefficients, are the contributors of film thickness non-uniformity. The simulation results indicate an interesting role switching between disilane and silylene as SiH₄ pressure varies from 0.1 to 1 Torr. When SiH₄ pressure is low, SiH₂ has a higher probability to impinge on the wafer surface and deposit. Its contribution to deposition rate is higher than that of Si₂H₆. On the other hand, when the pressure is high, SiH₂ tends to insert itself into SiH₄ or H₂ to generate Si₂H₆ or SiH₄. Therefore disilane becomes the primar factor of non-uniformity, instead of dilylene. |
本系統中英文摘要資訊取自各篇刊載內容。