查詢結果分析
相關文獻
- 應用類神經網路於顧客群之分類分析
- 高雄地區大型量販店顧客滿意之研究--好市多與其他量販店之比較
- TQM--政府改造與國家永續發展之道
- 服務品質管理模式之研究
- 了解顧客的需求
- Single Machine Scheduling Problem with Fuzzy Due Date and Processing Time
- 結合時間序列與類神經網路構建可靠度成長之預測模式研究
- 圖書館內部行銷初探
- Form Segmentation and Component Classification for Clinic Document Image Analysis
- 全面品質管理對顧客滿意經營與服務品質提升影響程度之實證研究--以銀行信用卡業務為例
頁籤選單縮合
題名 | 應用類神經網路於顧客群之分類分析=A Neural Network Approach for Customer Group Classification Analysis |
---|---|
作者 | 楊錦洲; 陳百盛; Yang, Ching-chow; Chen, Bai-sheng; |
期刊 | 管理與系統 |
出版日期 | 20050700 |
卷期 | 12:3 2005.07[民94.07] |
頁次 | 頁43-65 |
分類號 | 496.7 |
語文 | chi |
關鍵詞 | 顧客滿意; 倒傳遞類神經網路; 線性區別分析; 二次區別分析; Customer satisfaction; Backpropagation neural network; Linear discriminant analysis; Quadratic discriminant analysis; |
中文摘要 | 本研究建立了整合品質屬性之重要度與滿意度調查的類神經網路之顧客群分類模式。經過品質屬性之重要度與滿意度調查及分析之後,再以因素分析來萃取出顧客所認為重要的品質屬性構面,並以這些重要構面來建立類神經網路學習模式。利用倒傳遞類神經網路具有辦識類別的特性,來建構顧客對於品質屬性之滿意程度的分群判別模式,並與多變量之線性區別分析和二次區別分析相比較。研究結果顯示,類神經網路的整體分類正確率和預測的精確性均較佳,顯示類神經網路有較佳的分類效果。此外,根據網路中輸入變數對輸出變數的貢獻度分析結果,可明顯得知影響顧客分群結果的決定性因素有那些。對公司而言,由分析的結果可以瞭解不同群體的顧客所需要改善的重點有那些,可作為擬定改善策略上的參考,對於提昇服務品質上有相當程度的貢獻。 |
英文摘要 | This research establishes a classification model for customer groups using a neural network model. The proposed approach is based on the quality attributes from importance and satisfaction surveys. Factor analysis is utilized first to extract several important service quality attributes from customers. These attributes are used to construct the neural network learning process. The back-propagation neural network (BPN) is then used to establish a customer group satisfaction classification model. A similar classification model is produced using linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA). The classification performances of these methods are then compared with that from the BPN model. After the comparisons, it can be verified that the overall classification rate and prediction accuracy of the BPN is superior to those obtained using the LDA and QDA models. According to the input node contribution analysis of the output nodes. we can obtain the determinant variables that affect the classified customer satisfaction groups. Therefore, companies can obtain improvement information from the contribution analysis to improve their service quality and increase customer satisfaction. |
本系統之摘要資訊系依該期刊論文摘要之資訊為主。