查詢結果分析
相關文獻
- Application of Shifted Legendre Polynomials to Optimal Control of Distributed Parameter System
- Solution of State Equations of Linear Dynamic Systems Via Shifted Legendre Functions
- 球墨鑄鐵表面被覆之凝固組織與磨耗之研究
- 電漿電弧表面重熔硬化球狀石墨鑄鐵之凝固組織及沖蝕磨耗研究
- 不同矽含量之球狀石墨鑄鐵及其表面之電漿電弧重熔改質的沖蝕磨耗特性
- 未知參數系統的切換直接追蹤適應控制器之設計
- Optimal Boundary Control of the One-Space Dimensional Distributed Parameter Systems via Output Feedback Method
- The Design of Observers and Stabilizing Controllers for a Class of Uncertain Linear Systems
- Optimal Control of Multi-delays Systems Via Shifted Legendre Polynomials
- Parameter Identification Via Shifted Legendre Polynomials with Modified Computational Algorithm
頁籤選單縮合
題 名 | Application of Shifted Legendre Polynomials to Optimal Control of Distributed Parameter System=應用轉移式勒甘德函數於分佈參數系統最佳控制 |
---|---|
作 者 | 王茂齡; 張榮語; | 書刊名 | Journal of the Chinese Institute of Chemical Engineers |
卷 期 | 14:4 1983.10[民72.10] |
頁 次 | 頁427-437 |
分類號 | 314.64 |
關鍵詞 | 勒甘德函數; 參數系統; 轉移式; |
語 文 | 英文(English) |
英文摘要 | The shifted Legendre polynomial functions and finite difference method, are employed to solve the optimal control of linear distributed parameter system. Partial differential equation of distributed system is expanded into a set of ordinary differential equations by finite difference method. The adjoint equations are obtained from optimal control theory. The state equations and the adjoint equations of two-point boundary value problem are transformed to the differential equations of the initial value problem which can be easily solved by Legendre polynomial approximations. The general solutions of the differential equation of initial or two-point boundary condition are obtained in a series of the shifted Legendre polynomial funcitons. An illustrative example is given. Satisfactory computational results are obtained when compared with the numerical values by other method. |
本系統中英文摘要資訊取自各篇刊載內容。