頁籤選單縮合
題 名 | Optimal Control of Multi-delays Systems Via Shifted Legendre Polynomials=應用轉移式勒甘德多項式於多延滯系統之最佳控制 |
---|---|
作 者 | 張榮語; 楊淑瑛; 王茂齡; | 書刊名 | Journal of the Chinese Institute of Chemical Engineers |
卷 期 | 17:4 1986.07[民75.07] |
頁 次 | 頁267-278 |
分類號 | 460.02 |
關鍵詞 | 多延滯系統; 控制; 轉移式勒甘德多項式; |
語 文 | 英文(English) |
中文摘要 | 本文利用移轉式勒甘德多項式研究具性能指數之線性多延滯系統之最佳控制 在轉移式勒甘德多項式系列表文中,吾人以遞移矩陣係數來表示延滯變數。因此,線性多延滯微分方程式可以化為一系列線性代數方程式,同時性能指數也以狀態變數及控制變數之轉移式勒甘德多項式之展開係數表示之。利用時空分割之觀念,吾人將控制變數之區間區分為許多小間隔,如此,本文倡導一種非常有效之數值計算策略以簡化計算步驟。在本文中試舉一些例子,由計算結果均能得到滿意之結果。除此,本文所倡導之方法也可以延伸至具非恒等限制之線性多延滯系統之最佳控制。 |
英文摘要 | The optimal control of a linear multi-delay system with quadratic performance index is studied by shifted Legendre polynomials. The concept of coefficient shifted matrix is introduced to represent delay variables in the shifted Legendre polynomials series. The linear multi-delay differential equation are thus converted into a set of linear algebra equations. The quadratic performance index is also approximated by using shifted Legendre polynomials into a quadratic forms of the shifted Legendre polynomials coefficients of the state and control variables. An effective numerical algorithm in which the time period of the control system is divided into several intervals is proposed to simplify the computational procedure. Several examples of multi-delay optimal control systems are illustrated. Very satisfactory computational results are obtained. The proposed method can also be extended to approach the optimal control of multi-delay systems with inequality constraint by coupling with the quadratic programming. |
本系統中英文摘要資訊取自各篇刊載內容。