查詢結果分析
來源資料
相關文獻
- 以電漿輔助離子化磁控濺鍍法製備Li-Ni-O薄膜及其特性分析
- 偏壓輔助磁控濺鍍共沉積銅錫介金屬薄膜負極材料及電化學特性之研究
- 錫負極薄膜材料製備及電化學特性之研究
- 氫氧基磷灰石/鈦磁控濺鍍膜微結構及性質研究
- 隧道鄰近邊坡崩坍整治處理案例
- 反應性磁控濺鍍氧化鎢薄膜氧含量對其電致色變性質之影響
- Si/Ta/Cu UBM鍍層之結合強度
- 氧化鉿薄膜之漏電流分析
- Characteristics of C-axis Oriented AlN Films Grown by Reactive DC Magnetron Sputtering
- Growth of Highly C-axis Oriented AlN Films on GaAs Substrates
頁籤選單縮合
題 名 | 以電漿輔助離子化磁控濺鍍法製備Li-Ni-O薄膜及其特性分析=Ionized Magnetron Sputter Deposited Li-Ni-O thin Films |
---|---|
作 者 | 邱國峰; 楊卓蒼; 陳錦山; | 書刊名 | 真空科技 |
卷 期 | 16:1 2003.06[民92.06] |
頁 次 | 頁21-26 |
分類號 | 472.16 |
關鍵詞 | 磁控濺鍍; 電感耦合電漿; 偏壓; Li-Ni-O; ICP; Bias; |
語 文 | 中文(Chinese) |
中文摘要 | 本實驗利用電感耦合電漿(Inductive Coupled Plasma, ICP)和基材偏壓的方式輔助薄膜沈積,藉以控制膜的結晶方向。以往為了改進薄膜結晶性而使用基材加熱法,往往限制了基材種類的選擇,ICP屬於一種低溫製程,其可使用的基材能夠有更多的選擇性,並且可以在沈積時現場調控(In-situ Modification)薄膜的性質,我們使用蘭米爾探針(Langmuir Probe)法作電漿特性的量測,以了解電感耦合電漿實驗裝置對電漿性質的影響。薄膜製備則利用鋰鎳氧(LiNiO2)靶材在各種工作氣壓(Pure Ar, 99.99%),以直流磁控濺鍍法配合ICP電漿在矽基材上沈積鋰鎳氧薄膜,並以電感耦合電漿(ICP)輔助薄膜成長。此技術乃是在濺鍍靶及基地之間以電感線圈產生電漿,經由調整促進電感耦合之射頻功率(Rf Power)和基座偏壓(Substrate Bias),而能精確控制離子轟擊之流量(Ion Flux)及能量(Ion Energy),進而達到臨場薄膜改質之目的。我們以濺鍍氣壓、耦合射頻功率及基座偏壓為主要製程參數,利用電感耦合電漿(ICP)提供較傳統濺鍍法更高之轟擊離子流量,研究離子轟擊對Li-Ni-O薄膜之影響。其晶可變化由X光繞射(XRD)和穿透式電子顯微鏡(TEM)分析。在耦合射頻功率為40W之條件下,以0.3 Pa之濺鍍氣壓,施予不同偏壓(0V-100V),研究發現濺鍍之薄膜具有接近立方NiO結構,因摻雜少量Li,使立法結構略微扭曲形成LixNij-xO氧化物。基材加偏壓沈積薄膜時其織構發生改變,在0.3 Pa濺鍍壓力下,薄膜發展出LixNix-xO(111)織構。若不加偏壓僅施予不同射頻功率(0~120W),在0.3 Pa濺鍍壓力下,沈積之薄膜隨耦合射頻功率升高出現(200)及(220)之結晶相。但是在較高壓力下(1Pa~3Pa),耦合射頻功率與基座偏壓對LixNi-xO薄膜晶相變化之影響則並不明顯。 |
英文摘要 | In my experiment, lithium nickelate (Li-Ni-O) thin films was prepared by an inductively coupled plasma (ICP) assisted sputtering and substrate bias method, we could control the crystalline and the texture of the films. Traditionally, we usually use a heating treatment by substrate heating to change to texture of the films. In this way, the flexibility of choosing different materials of the substrate would be decreased. It is a low temperature process using ICP technique to deposit tilms, by this process we can use variant substrate materials and in-situ modify the texture of the thin film during film growth. In addition, we applied Langmuir probe method to study the plasma characteristics when ICP process was carried. We deposited films by using an magnetron sputtering gun with a lithium nickelate (LiNiO2) target at different pressure (pure Ar), and an inductively coupled plasma assisted sputtering technique was used to assist film deposition. This method is that we induced a second plasma source between sputtering gun and substrate by using a coil inputted an rf (radio frequence) power. We could accurately control the amount of bombardment ion (ion flux) and the strength of bombardment ion (ion engery) in order to change the properties of the film during deposition. The main process variables are deposition pressure, rf power, and the voltage of the substrate. Using ICP technology to deposit thin films could provide more ion flux and ion energy than traditional method, we could study the changing of lithium nickelate thin films under different bombardment situation. At pressure 0.3 Pa and 3 Pa, coil power = 40W and gun power = 60W, we bias the substrate from 0 to 100V, (101) texture developed was found by X-ray diffractrometer (XRD) and Transmission electron microscope (TEM), in the study we found that the film was NiO cubic structure distorted to LixNi1-xO in the reason of doping of lithium. Without substrte bias, we only inputted coil power between 0 to 120W at 0.3 Pa, the film texture change from (200) to (220) with the increasing of coil power. At pressure 3Pa, the effect of film texture change was not so obvious that we applied this process on film deposition. |
本系統中英文摘要資訊取自各篇刊載內容。