查詢結果分析
來源資料
相關文獻
- Complex Variables BIE and BEM for a Plane Doubly Periodic System of Flaws
- 等向性短纖維複合材料軸向彈性性質理論模式
- 改良型取樣點誤差分析在h-調適型邊界元素法的應用
- Weakly Singular, Singular and Hypersingular Integrals in 3-D Elasticity and Fracture Mechanics
- Analysis of the Mechanic Behavior and Rutting of Asphalt Concrete Using a Sand Model
- 圓盤受局部均佈壓力的全場應力解析與數位光彈實驗
- 集集大地震後水井水位變化模擬及分析
- A Note on a Boundary Element Method for the Numerical Solution of Boundary Value Problems in Isotropic Inhomogeneous Elasticity
- 彈性力學淺談
- 蠟型與殼模之熱傳導率及熱膨脹係數對於殼模熱應力影響之研究
頁籤選單縮合
題 名 | Complex Variables BIE and BEM for a Plane Doubly Periodic System of Flaws=雙週期裂縫系統複變邊界積分方程與邊界元素法 |
---|---|
作 者 | Linkov,Alexander M.; Koshelev,Vadim F.; | 書刊名 | 中國工程學刊 |
卷 期 | 22:6 1999.11[民88.11] |
頁 次 | 頁709-720 |
分類號 | 440.135 |
關鍵詞 | 複變數積分方程; 雙週期裂縫; 彈性力學; Complex variable boundary equations; Doubly periodic flaws; Elasticity; |
語 文 | 英文(English) |
中文摘要 | 本文導出雙週期平面彈性問題的新複變數奇異和超奇異邊界積分方程。考慮的問 題包含顆粒、置入物、有孔洞和含裂縫這些問題可使用合適的非週期性系統的程式來修改, 本文提出計算複數型式柔度的公式。複製數邊界元素法非週期性問題先前已發展出數值工具 導出複變數超奇異邊界積分方程,並且被有效推廣到含裂縫雙週期系統。正方晶格和三角晶 格直線裂縫的應力強度因子和柔度係數計算與實驗資料吻合,並且計算的精確度都在可接受 的範圍內,裂縫尖端和含曲線多重裂縫雙週期系統的應力強度因子和柔度係數均在本文中說 明。 |
英文摘要 | New complex variable singular and hypersingular boundary integral equations (CV-BIE) are derived for doubly periodic plane elasticity problems. They refer to systems of blocks (grains) inclusions holes and cracks. Their forms convenient when adjusting conventional programs for non- periodic systems to periodic problems are suggested. Simple formulae are presented to calculate effective compliances in complex variable. Numerical implementation of the derived complex variable hypersingular (CVH) BIE in the mentioned forms is carried out by appropriately adjusting a program of CVH-BEM previously developed for non-periodic problems. It is used to check accuracy and to obtain new results for doubly periodic systems of cracks. Stress intensity factors (SIFs) and effective compliances are calculated for straight cracks in square and triangular lattices to compare them with published results. They show agreement whithin the accuracy reached by other authors. New data on SIFs and effectiv compliances for doubly periodic systems of angular and curvilinear strongly interacting cracks illustrate abilities of the method. |
本系統中英文摘要資訊取自各篇刊載內容。