查詢結果分析
相關文獻
- Micromechanics of Composite Materials--Interfacial Crack and Dislocations
- 單向纖維複合材料有效彈性常數之熱微觀力學理論模式
- 以微觀力學模式探討混凝土材料之彈性模數
- Micromechanics Estimation for the Effective Magnetostrictive Behavior of Magnetostrictive Composites
- Theoretical Approximate Elastic Moduli of Concrete Material
- 溫度效應下複合材料積層平板動態特性之實驗探討
- Relationship Between the Dispersion of Thermal Effluent and the Tidal Current in the Waters Near the Outlet of the Third Nuclear Power Plant in Southern Taiwan
- 零工型工廠以工作為導向的啟發式排程系統之構建
- 應用模擬退火搜尋法則於複合材料等厚度疊層板之疊層排序
- Micromechanics and Effective Elastic Moduli of Multiphase Composites Containing Randomly Dispersed Interacting Spherical Inclusions of Different Properties
頁籤選單縮合
題 名 | Micromechanics of Composite Materials--Interfacial Crack and Dislocations=複合材料微觀力學--介面裂縫與差排 |
---|---|
作 者 | 李三保; | 書刊名 | Proceedings of the National Science Council : Part A, Physical Science and Engineering |
卷 期 | 22:6 1998.11[民87.11] |
頁 次 | 頁734-750 |
分類號 | 440.13 |
關鍵詞 | 複合材料; 微觀力學; 介面裂縫; 排; Perfect bonded interface; Sliding interface; Interfacial crack; Screw dislocation; Edge dislocation; Stress intensity factor; Image force; |
語 文 | 英文(English) |
中文摘要 | 本文主要探討複合材料之微觀力學--介面裂縫與差排。我們發現由螺旋差排所引 發在沿完美鍵結界面裂縫尖端的應力強度因子,跟在單相材質下有相同的的表示式,也就是 將單相材質中的剪變係數取代成複合材料中兩材質剪變係數的調和平均數。而滑移界面裂縫 尖端因刃差排所引發的模式 I 應力強度因子,我們發現若將單相材質中的彈性常數 E/(1-v �� ) 換成複合材料中兩材質彈性常數 E/(1-v �� ) 的調和平均數,即可得到其解,其中 E 和 v 分別為楊氏係數和波以松比; 然而滑移界面裂縫尖端因刃差排和螺旋差排所引發的模 式Ⅱ和模式Ⅲ的應力強度因子則為零。外加應力所產生沿完美鍵結界面之裂縫尖端的模式Ⅲ 應力強度因子和沿滑移界面之裂縫尖端的模式Ⅰ應力強度因子,跟單相材質時有相同的表示 式,因為兩者表示並沒有包含彈性常數。在高溫的潛變成長,複合材料的應力表示式相等於 將單相材質解中的彈性常數 E/(1-v �� ) 換成複合材料中兩材質彈性常數 E/(1-v �� ) 的 調和平均數。沿完美鍵結界面之裂縫尖端因刃差排和模式Ⅰ的外加應力所產生的應力強度因 子,則無法由單相材質中的解來求得。 |
英文摘要 | The mechanical behaviour of interfacial cracks and dislocations in composite materials is investigated. The stress intensity factor at a crack tip along a perfect bonded interface arising from screw dislocation is found to have the same expression as that of single phase media if the shear modulus of the single phase medium is replaced by the harmonic mean of the shear moduli of both media in the composite. The mode I stress intensity factor at a crack tip along the sliding interface arising from edge dislocation is the same as that of a single phase medium if the elastic constant E/(1-v��) of the single phase media is replaced by the harmonic mean of E/(1-v��) of both media in the composite, where E and v are the Young's modulus and Poisson's ratio, respectively. However, mode Ⅱ and mode Ⅲ stress intensity factors at a sliding interfacial crack arising from edge and screw dislocations are zero. The mode Ⅲ stress intensity factor at a crack tip along a perfect bonded interface and mode Ⅰ stress intensity factor at a crack tip along a sliding interface arising from an applied load have the same expression as their single phase media counterparts because their expressions do not contain an elastic constant. Under high temperature creep growth, the expression of stress in composite materials has the same form as that in a single phase material if E/(1-v��) of the single phase medium is replaced by the harmonic mean of E/(1-v��) of both media in the composite. The stress intensity factors at a crack tip along a perfect bonded interface arising from edge dislocation and a mode Ⅰ applied load are mixed and cannont be obtained from the solution of single phase media with suitable arrangement. |
本系統中英文摘要資訊取自各篇刊載內容。