查詢結果分析
來源資料
相關文獻
- Numerical Simulation of Conjugate Problems for Power-Law Fluids Past a Flat Plate
- 油壓漫談(1)--非牛頓流體
- Conjugate Problem of Wall Conduction and Mixed Convection for Micropolar Fluids over Two-dimensional or Axisymmetric Bodies
- Conjugate Mixed Convection-Conduction Heat Transfer from a Vertical Cylindrical Fin
- 冪次非牛頓流體對於垂直平板的混合對流熱與質傳遞
- 含焦糖成分之非牛頓流體食品的感官評價與抗氧化性
- 水深平均二維高含砂水流模式之發展研究
- 植入不同支架之血管受血液非牛頓流體性質影響下之脈衝式壁面剪應力變化
- Effect of Internal Heat Generation on Free Convection Flow of Non-Newtonian Fluids over a Vertical Truncated Cone in Porous Media: VWT/VWC
- Internal Heat Generation Effect on Free Convection Flow of Power-Law Fluids over a Vertical Plate in Porous Media: VHF/VMF
頁籤選單縮合
題 名 | Numerical Simulation of Conjugate Problems for Power-Law Fluids Past a Flat Plate=流過一平板冪次律流體共軛問題之數值模擬 |
---|---|
作 者 | 王添益; | 書刊名 | 明志工專學報 |
卷 期 | 29 1997.05[民86.05] |
頁 次 | 頁1-10 |
分類號 | 335.22 |
關鍵詞 | 共軛參數; 非牛頓流體; 冪次律黏性指數; 熱傳遞率; Conjugate parameter; Non-newtonian fluids; Power-law viscosity index; Heat transfer rate; |
語 文 | 英文(English) |
中文摘要 | 本計劃針對耦合非牛頓流體流過平板產生之對流及平板內部之熱傳導所形成之共 軛熱傳問題進行研究。本研究當中提出一個共軛參數δ以反應共軛熱傳問題之特性。此共軛 參數的數值介於 0 和 1 之間, 而兩個極端值分別相對應於具有等熱通量 (δ =1) 及等壁 溫 (δ =0) 邊界條件之一般對流問題。 同時,非牛頓流體採取冪次律模式,對於似塑性流 體,指數 n<1;牛頓流體 n=1;擴大性流體 n>1。進一步而言,座標及應變數被適當地轉換 以得到在計算上相當有效之數值解,而且適用於整個共軛問題及整個非牛頓流體領域。共軛 參數、冪次律黏性指數和普朗特數對於溫度輪廓以及熱傳遞率之影響將清楚地顯示出來。 |
英文摘要 | In this paper, the coupled conduction problem in a flat plate and convection problem for the non-Newtonian fluids are studied. A conjugate parameter δ is proposed to reflect the characteristics of the conjugate problems. The value of the conjugate parameter lies between 0 and 1. The two limiting values are corresponding to the ordinary convection problem with boundary condition of constant wall heat flux (δ =0) and constant wall temperature (δ =1), respectively. In addition, the power-law model is used for non-Newtonian fluids with exponent n < 1 for pseudoplastics, n = 1 for Newtonian fluids and n > 1 for dilatant fluids. Furthermore, the coordinates and dependent variables are transformed to yield computationally efficient numerical solutions that are valid over the entire regime of conjugate problems and the whole domain of the non-Newtonian fluids. The effects of the conjugate parameter, the power-law viscosity index and the generalized Prandtl number on the temperature profiles, as well as on the local heat transfer rate are clearly illustrated. |
本系統中英文摘要資訊取自各篇刊載內容。