查詢結果分析
來源資料
頁籤選單縮合
題名 | 灰關聯分析、類神經網路、案例推理法於財務危機預警模式之應用研究:Predict the Financial Crisis by Using Grey Relation Analysis, Neural Network, and Case-based Reasoning |
---|---|
作者 | 湯玲郎; 施並洲; |
期刊 | 中華管理評論 |
出版日期 | 20010300 |
卷期 | 4:2 民90.03 |
頁次 | 頁25-37 |
分類號 | 494.7 |
語文 | chi |
關鍵詞 | 財務危機預警; 灰色關聯分析; 類神經網路; 案例推理法; Financial crisis prediction; Neural network; Case-based reasoning; Grey relation analysis; |
中文摘要 | 本文應用灰關聯分析法、類神經網路、與案例推理法等,探討股票上市公司的財務危機預警模式,利用45個財務指標,評估72家樣本公司過去三年的經營績效,以預測財務正常公司與異常公司判斷之正確性。從研究結果發現採用類神經網路的預警效果最好,其次為案例推理法;而平均預警準確率以發生危機的前一年的87.1%,高於前二年的78%與前三年的財務指標62.1%。 |
英文摘要 | This paper applies Grey Relation Analysis, Neural Network, and Case-based Reasoning to study the prediction model on financial crisis. We use 45 financial indexes to evaluate the operating performance of 72 companies for the past three years in order to assure the prediction accuracy on financial crisis for normal and abnormal companies. Neural network performs the best, while Case-based Reasoning is the second. The average accurate rate of financial prediction are 87.1% for former one year, 78% for former two years, and 62.1% for former three years separately before the crisis breaks. |
本系統之摘要資訊系依該期刊論文摘要之資訊為主。