查詢結果分析
相關文獻
- A Fast and Efficient Competitive Learning Design Algorithm Based on Weight Vector Training in Transform Domain
- 利用小波與類神經網路進行心電圖特徵擷取與病症分類
- The Frequency Sensitive Competitive Learning Algorithms for Vector Quantization
- 小波轉換與類神經網路應用於電力干擾波形辨識
- 再生能源雙向市電併聯轉換器類神經故障診斷系統之判讀--以反流器為例
- 結合紋理分析與影像增強技術於電腦斷層影像中輔助診斷急性缺血性腦中風
- 鑰匙辨識之評估與比較
- Neural Network Procedures for Taguchi's Dynamic Problems
- 專家系統振動訊號圖型判別之研究
- 反傳遞模糊類神經網路於流量推估之應用
頁籤選單縮合
題 名 | A Fast and Efficient Competitive Learning Design Algorithm Based on Weight Vector Training in Transform Domain=一個在轉換領域中訓練鍵結值向量的快速且有效率之競爭學習演算法 |
---|---|
作 者 | 黃文吉; 曾易聰; 廖世強; | 書刊名 | 中國工程學刊 |
卷 期 | 21:5 1998.09[民87.09] |
頁 次 | 頁625-631 |
分類號 | 310.153 |
關鍵詞 | 競爭學習法; 類神經網路; 小波轉換; Competitive learning; Neural networks; Wavelet transform; |
語 文 | 英文(English) |
英文摘要 | This paper presents a new competitive learning (CL) algorithm which performs the training in the wavelet domain. In the algorithm, the winning neural units during the training process are identified using the partial distance search (PDS) technique so that little multiplication is required. The PDS can be performed over the lower resolution lution representation of codewords in the wavelet transform domain to further reduce the computation time required for training. Simulation results show that, at the expense of a possible slight decrease in performance, the algorithm requires less than 5% of the computational time required by the traditional CL algorithm in many cases. |
本系統中英文摘要資訊取自各篇刊載內容。