查詢結果分析
相關文獻
- 大中華貨幣單一化與經濟指標之探討--以模糊類神經和ARIMAX-GARCH模型之應用
- 管理元件化資源應用系統--以遠距教學系統為實例
- 以模糊及類神經理論探討次微米MOSFET元件臨限電壓預測之研究
- 模糊類神經網路應用於集水區出流量之預測
- 灰關聯分析與類神經網路輔助電測資料分析
- 鐵路立體化評估準則與方案選擇之研究--灰色關聯分析法之應用
- 鮮食鳳梨品質評價之研究
- 不同人工智慧演算方法於認購權證評價績效之研究
- 灰決策系統輔助低電阻油氣層鑑別
- Neural-Based Annealing Processes Optimization of Cold-Rolling Coil by Genetic Algorithm and Grey Relational Analysis
頁籤選單縮合
題 名 | 大中華貨幣單一化與經濟指標之探討--以模糊類神經和ARIMAX-GARCH模型之應用=The Study of Chinese Currency Unification and Economic Factors: The Analysis of Fuzzy Neural Network and ARIMAX-GARCH Model |
---|---|
作 者 | 陳若暉; 鄭誌逸; 高啟勛; | 書刊名 | 中原企管評論 |
卷 期 | 11:2 2013.10[民102.10] |
頁 次 | 頁29-53 |
分類號 | 561.1 |
關鍵詞 | 大中華單一貨幣; 灰關聯分析; 模糊理論; 類神經網路; Chinese currency unit; ARIMAX-GARCH; Grey relationship analysis; Fuzzy; Neural network; |
語 文 | 中文(Chinese) |
中文摘要 | 本研究參考歐元通貨籃之建構,以台灣、香港和中國大陸之每人生產毛額、出口總值和淨外匯存底加權,分別利用特別提款權(Special Drawing Right,SDR)、歐元、修正SDR方式,建構1992年第一季至2007年第二季之大中華單一中心匯率(CCU)。以灰色關聯分析、模糊類神經、及ARIMAX-GARCH模型,分析影響CCU之關鍵因素和預測走勢,並比較模式之績效。經灰色關聯分析結果發現,CCU分別受工業生產指數、國內生產毛額、股價指數、外匯存底等變數影響最深,而灰色關聯分析篩選之前五變數預測績效皆優於後五變數,且修正後匯率模式績效較SDR和EURO計算方式佳。ARIMAX-GARCH分析結果以工業生產指數、貨幣供給成長率和貿易變數影響最大且深遠。整體而言,ARIMAX-GARCH預測績效優於模糊類神經。 |
英文摘要 | Referring to the structure of the EURO currency basket, the central rate of Chinese Currency (CCU) Unit was simulated from 1992/Q1 to the 2007/Q2 by the weights based on the GDP per capital, the exports, and the net foreign reserve of the Taiwan, Hong Kong, and Mainland China. By comparing each of the Special Drawing Rights (SDR), EURO, and modified-SDR methods, it is adequate to apply Grey Relation, Fuzzy Neural Network, and ARIMAX-GARCH model to find out the key factors affecting CCU and performing a prediction analysis. According the grey relational analysis, we found that the better five variables performed well comparing with the worse five. The modified-SDR method is better than SDR and EURO methods to measure CCU. By analyzing the ARIMAX-GARCH model, the industry productive index, money supply growth rate, and trade factors significantly affect the CCU and its dynamic effect. Generally, the forecasting performance of ARIMAX-GARCH model is better than the neutral network. |
本系統中英文摘要資訊取自各篇刊載內容。