查詢結果分析
來源資料
相關文獻
- 一種高效能改良式基因演算法之向量量化器設計
- A Novel Fast Encoding Algorithm for Vector Quantization Using Two-stage Transform Process
- Entropy-Constrained Motion Vector Quantization
- Dynamic Programming Multi-Resource Allocation and Its Application to Vector Quantization
- A Novel Object-Matching Motion Compensation Algorithm and Its Applications to Video Coding
- 考慮分散式微電網放射型配電饋線升級為閉環路架構之研究
- 圖書館書籍通閱移送之車輛途程問題--巨集啟發式演算法之應用
- 可選擇績效指標下最適生產排程之研究--以某拉門製造廠為例
頁籤選單縮合
| 題 名 | 一種高效能改良式基因演算法之向量量化器設計=A High Efficient Memetic Algorithm for the Design of Vector Quantization |
|---|---|
| 作 者 | 歐謙敏; 李宗晟; | 書刊名 | 清雲學報 |
| 卷 期 | 31:4 2011.10[民100.10] |
| 頁 次 | 頁1-14 |
| 分類號 | 448.5 |
| 關鍵詞 | 改良式基因演算法; 向量量化器; 穩態型基因演算法; Memetic algorithm; Vector quantizer; Steady-state genetic algorithm; |
| 語 文 | 中文(Chinese) |
| 中文摘要 | 本文提出一種以改良式基因(memetic algorithm, MA)演算法來設計向量量化 器(vector quantizers, VQs),此演算法是先用穩態型基因演算法(Steady-State genetic Algorithm, SSGA)來做全域搜尋,並再以C-Means 演算法做局部改善,相較於其 他改良式基因演算法使用世代型基因演算法(generational GA)去做全域搜尋。本文 所提出的改良式基因演算法能有效降低向量量化器碼簿訓練時間,除此之外,其 結果也最接近全域最佳解,且對初始的碼字選擇較不敏感。模擬結果顯示,本演 算法在設計向量量化器上比其他改良式基因演算法在相同的基因族群個數下,擁 有穩定效能且更能大幅降低CPU 計算時間。 |
| 英文摘要 | A novel memetic algorithm (MA) for the design of vector quantizers (VQs) is presented in this paper. The algorithm uses steady-state genetic algorithm (GA) for the global search and C-Means algorithm for the local improvement. As compared with the usual MA using the generational GA for global search, the proposed MA effectively reduces the computational time for VQ training. In addition, it attains near global optimal solution, and its performance is insensitive to the selection of initial codewords. Numerical results show that the proposed algorithm has significantly lower CPU time over other MA counterparts running on the same genetic population size for VQ design. |
本系統中英文摘要資訊取自各篇刊載內容。