查詢結果分析
來源資料
相關文獻
- 銅奈米薄膜拉伸之分子動力學和有限元素法之耦合模式研究
- 銅奈米薄膜拉伸之分子動力學模式研究
- The Relationships between the Crack-tip Stress Fields and the CreepCrack Growth Rates
- 壓克力漿料性質之評估
- Calcite Twins for Determining Paleostrain and Paleostress in the Thrust Front of the Taiwan Collisional Belt
- 高性能混凝土之單軸應力應變行為
- 雙曲線模式之黏土依時勁度分析
- 平面應變條件下黏性土壤之力學行為
- 柳杉正常木之生長應力分布
- 非均勻應力場中傳統應變規量測值之物理意義
頁籤選單縮合
題 名 | 銅奈米薄膜拉伸之分子動力學模式研究=Study on Molecular Dynamics Model of Copper Nano-Scale Film under Tension |
---|---|
作 者 | 林有鎰; 羅仕鵬; 李志良; 吳邦彥; | 書刊名 | 德霖學報 |
卷 期 | 23 2009.06[民98.06] |
頁 次 | 頁65-72 |
分類號 | 440.21 |
關鍵詞 | 分子動力學; 銅奈米薄膜; 比例拉伸; 應力; 應變; Molecular dynamics; Copper nano thin film; Proportional tension; Stress; Strain; |
語 文 | 中文(Chinese) |
中文摘要 | 本文建立一套銅奈米薄膜拉伸實驗之分子動力學模式。首先以分子動力學模擬銅奈米薄膜比例拉伸 實驗,薄膜尺寸為14a 0 ×6a 0 ×6a 0,a0為晶格常數,原子總數為2016 個,拉伸速率為0.001/步,系統 溫度為293K,求出自由移動區各原子位移和等效應變,代入原子級應力公式求出拉伸模擬的等效應力, 進而繪出流變應力-應變曲線,並得到流變應力-應變三階多項式回歸關係式。結果顯示銅奈米薄膜在截 斷半徑為平衡距離的2.5 倍的條件下,得到(1)當應變為零時,應力值為-0.7952GPa,顯示預應力確實存 在於銅奈米薄膜中,(2)流變應力-應變回歸公式為σ=-0.898+50.149* ε -64.060* ε2 +25.123* ε3,(3)銅奈 米薄膜的外型除了沿著x 方向伸長外,其他方向變化量較少。 |
英文摘要 | In this paper, a model of molecular dynamics simulation for copper nano thin film under tension was established. Firstly, molecular dynamics was used to simulate the proportional tensile test of copper nano thin film under the conditions that the size of copper nano thin film is14a0 × 6a0 × 6a0 where a 0 is lattice constant, there are total 2016 atoms in the whole structure, the tensile rate is set up at 0.001/step and the system temperature is 293K to achieve the atomic displacement and equivalent strain in the free motion zone. Then, equivalent stress could be calculated by using atomistic stress formula. Finally, a flow stress-strain curve was plotted according to the stress-strain relationship and a three-order stress-strain polynomial regressive equation was established. The results show that (1) when being zero strain, the stress was -0.7952GPa under the condition that the truncated radius is 2.5 times equilibrium radius, that is, pre-stress existed exactly in the copper nano thin film. (2) the flow stress-strain regressive equation was σ=-0.898+50.149* ε -64.060* ε2 +25.123* ε3 . (3) the configuration of copper nano thin film had little changes except the elongation following x direction. |
本系統中英文摘要資訊取自各篇刊載內容。