頁籤選單縮合
題 名 | A Generalized Heuristic Learning Approach to Project Scheduling Problems with Resource Constraints=通化型啟發式學習法於專案資源需求排程問題之研究 |
---|---|
作 者 | 許蒞彥; 李昇暾; | 書刊名 | 工業工程學刊 |
卷 期 | 25:3 2008.05[民97.05] |
頁 次 | 頁204-214 |
分類號 | 494.542 |
關鍵詞 | 專案排程; 啟發式學習法; 回溯法; 人工智慧; Project scheduling; Heuristic learning; Backtracking; Artificial intelligence; |
語 文 | 英文(English) |
中文摘要 | 本論文提出一套通化型啟發式學習演算法,並探討其在專案資源需求排程問題上的應用。此一演算法的特色在於其完整的啟發式學習搜尋過程:狀態選擇、啟發式學習以及搜尋路徑的評估,且能提供持續改善狀態選擇決策的能力。藉由啟發式學習的門檻值,該演算法允許使用者設定其可接受的解,最佳解或近似最佳解的品質。對於專案排程的解法則植基於排程過程中專案活動狀態的特性與資源的可用率。此解法由狀態、狀態轉換運算子、啟發式估測以及狀態轉換的成本等所組成。本研究並以Patterson的110問題爲實證研究對象,以驗證所提出的啟發式學習法於排程問題求解之績效。 |
英文摘要 | We present a generalized heuristic learning algorithm and a solution approach for its implementation in solving project scheduling problems with resource constraints. The search process of the algorithm is characterised by the complete heuristic learning process: state selection, heuristic learning, and search path review. The heuristic learning process enables the algorithm to continue to improve the state selection decision. The heuristic learning threshold of the algorithm allows users to specify solution quality, optimal or near-optimal solutions, with efficient computation. The implementation approach is based on the dynamic nature of activity status and resource availability of a project. It consists of states, state transition operator, heuristic estimate, and the cost of transition between states. The performance analysis of this algorithm with Patterson's 110 problem is presented. |
本系統中英文摘要資訊取自各篇刊載內容。