查詢結果分析
來源資料
相關文獻
- Is Weighting a Routine or Something that Needs to be Justified?
- 訪員如何影響訪問績效?一個互動式的觀點
- 景文技術學院男女學生應用運動場地跑走法評測心肺耐力的研究
- 經濟活動的母體五行生剋加權迴歸
- 臺灣的工資差異: 1941-43年的實證
- Some Extensions in Collusion Properties
- 多元排序性Probit的估計: 個體資料法
- Multi-Dimensional WFM Filter and its Hardware Realization for Impulse Noise Removal
- Maximization of Power Dissipation Under Random Excitation for Burn-In Testing
- A Self-Tuning Run-By-Run Process Controller for Processes Subject to Random Disturbances
頁籤選單縮合
題 名 | Is Weighting a Routine or Something that Needs to be Justified?=抽樣調查資料之加權:正當的處理方法或是一種迷思? |
---|---|
作 者 | 劉從葦; 陳光輝; | 書刊名 | 選舉研究 |
卷 期 | 12:2 民94.11 |
頁 次 | 頁149-187 |
分類號 | 540.19 |
關鍵詞 | 加權; 單位無反應; 項目無反應; 臺灣選舉與民主化調查; Weighting; Unit non-response; Item non-response; TEDS; |
語 文 | 英文(English) |
中文摘要 | 經由抽樣設計恰當的調查研究所收集到的樣本資料應該能夠準確估計母體參數。但是因為單位無反應的問題,執行調查的單位或分析資料的學者通常會以加權的方式來減少樣本統計量與母體參數之間的差距。加權後的資料在人口學變項上比未加權資料較為接近母體參數,因此加權似乎是一個合理處理樣本資料的做法。 然而,即使加權是可行的解決方法,也絕非萬靈丹。在加權前也必需提出事後操弄資料的理由,而不是將加權視為理所當然。本文以台灣選舉與民主化調查為例,首先說明加權後的資料不必然較接近母體參數的原因。投票率、各政黨得票率、與婚姻狀況在加權後反而和母體參數有較大的差距。 除了單一變數分析之外,當討論的主題是變數間的關係時,加權可能增加也可能減少相關性的強度。雖然加權似乎會影響相關性,但其影響究竟是更接近真實的關係,抑或是扭曲真正的相關性則不得而知。此外,通常對整筆資料作加權只處理了單元無反應的問題,但仍然沒有解決多變量分析一定會遇到的項目無反應問題。 不論是單一變數分析或是多變量分析,在加權之前應該先嘗試其他增加樣本代表性與提高資料品質的方法。如果沒有先投入更多時間與心力在問卷設計、抽樣設計、訪員訓練與監督上,加權只是低成本的取巧做法。最後,假使一定要加權,必須說明與討論為什麼要加權、以哪些變數加權、如何加權、以及加權所產生的影響,而非不加思考地將加權當作例行公事。 |
英文摘要 | Survey research as a method of collecting sample data is supposed to produce sample statistics which can estimate the corresponding population parameters if the sampling design is appropriate. However, for reasons such as unit non-response, survey data is usually weighted by the institutes that collect the data or by researchers who analyse the data in order to correct or diminish the discrepancies between sample and population. Sample statis-tics based on weighted data are more representative of the population para-meters than unweighted data in terms of some demographic characteristics. Therefore, to some extent, it seems legitimate to weight data and this ma-nipulation has become a routine when dealing with survey data. It is true that to weight data could be helpful, but this manipulation ne-eds justifications. This paper therefore tries to argue that to weight data is no panacea and should not be taken for granted when considering the exam-ples in Taiwan’s Election and Democratization Studies (TEDS) surveys. The first section discusses why weighted data is not necessarily representative of the population. As the TEDS surveys show, the turnout, the vote shares of parties, and marital status become more deviant from the population para-meters after weighting the data. |
本系統中英文摘要資訊取自各篇刊載內容。