查詢結果分析
來源資料
相關文獻
- The Pricing Model of Stock Index Futures in Imperfect Markets and Analysis of Price Expectation
- 不完全市場下外匯期貨之定價--理論與實證
- Application of High-Order Least-Squares Finite-Element Method for Second-Order Partial Differential Equations
- Optimal Commodity Taxation in Incomplete Markets
- 不完全市場下之選擇定價
- The Welfare Effects of Capital Taxation: A Reconsideration in the Case of Incomplete Markets
- 變數之估計方法與不完全市場下選擇權定價模式之再實證
- Equivalent Two-Dimensional State-Space Models for Hyperbolic Partial Differential Equations
- Controllability and Observability of N-Dimensional Linear Systems
- 橢圓偏微分方程在非直角區域之快速算法及應用
頁籤選單縮合
題名 | The Pricing Model of Stock Index Futures in Imperfect Markets and Analysis of Price Expectation=不完全市場下之股價指數期貨定價模式與價格預期分析 |
---|---|
作者 | 許溪南; 王健聰; Hsu, Hsinan; Wang, Janchung; |
期刊 | 成功大學學報 |
出版日期 | 19981100 |
卷期 | 33(人文.社會篇) 民87.11 |
頁次 | 頁355-381 |
分類號 | 563.53 |
語文 | eng |
關鍵詞 | 不完全市場; 套利機制; 偏微分方程; 預期成長率; 價格預期; 股價指數期貨定價模式; Imperfect markets; Arbitrage mechanism; PDE; Expected growth rate; Price expectation; Pricing of stock index futures; |
中文摘要 | 現實資本市場不是完美的,套利機能也不可能是完全,尤其是指數套利。本研究 的目的有三:(1)利用偏微分方程以及套利不完全的論點,發展一套不完全市場下之股價指 數期貨的定價模式。(2)檢定持有成本模式應用於現實的不完全市場的正確性。(3)探討股 價指數期貨合約是否含有價格預期的訊息。本研究將價格預期及風險趨避等因素納入考量 之後,得出不完全市場下之股價指數期貨的定價模式。雖然本文導出的定價模式與完全市 場下之持有成本模式數學形式上完全相同,但兩者在股價預期成長率的看法上仍存有很大 差別。即不完全市場模式隱含著股價的預期成長率為某一報酬率。然而,持有成本模式隱 含著股價預期成長率則為無風險利率。在實證研究方面,迴歸分析及符號檢定結果,皆指 出持有成本模式隱含著股價預期成長率為無風險利率之假定並不正確。至於價格預期分析 結果,則傾向支持股價指數期貨合約具有價格揭露功能,並且指出價格預期的確在指數期 貨定價方面扮演著重要角色。 |
英文摘要 | Capital markets in real world are not perfect and arbitrage mechanism can not be complete, especially index arbitrage. The purposes of this paper are (1)to use PDE and an argument of incompleteness of arbitrage mechanism to develop a pricing model of stock index futures in imperfect markets; (2)to test the adequacy of the cost of carry model in imperfect markets; and (3)to examine whether the index futures contracts contain information of price expectation. The pricing model in this paper incorporates price expectation and risk aversion. In view of mathematical form, our model is identical to the cost of carry model. However, an important difference between the two models is the expected growth rate. In our imperfect market model, the implied expected growth rate of stock price is some rate; whereas, in cost-carry model, the implied expected growth rate of stock price is risk-free rate. In empirical research, the results from regression analysis and sign test all indicate that the assumption by the cost of carry model that the expected growth rate equals the risk-free rate is not adequate. Additionally, the results from an analysis of price expectation tend to support that index futures contracts indeed play a role of price discovery and that price expectation plays an important role in determining the index futures prices in real futures markets. |
本系統之摘要資訊系依該期刊論文摘要之資訊為主。