查詢結果分析
來源資料
相關文獻
- The Calculation of Complexity in Normal and Apoplectic EEG Signals
- Measurements for Rule Based Systems
- Parallel Two-dimensional Prefix Computation on a Mesh-connected Computer
- 動態批量平行演算法之探討
- Effects of Task Complexity on Reaching Kinematics: A Pilot Study
- 資優兒童問題解決能力實作評量之建構研究
- 改進CELP隨機碼本的搜尋方法之研究
- 行動或狀態導向、目標層次、工作複雜度對國中生行動控制策略與工作表現之影響
- 造形複雜度之探討
- 中年族群對電腦網頁視覺圖像複雜度之偏好研究
頁籤選單縮合
題 名 | The Calculation of Complexity in Normal and Apoplectic EEG Signals=以複雜度C分析正常與中風病人腦波信號 |
---|---|
作 者 | 林育德; 張璞曾; 宋成銘; 郭德盛; 劉繼鴻; | 書刊名 | 中國工程學刊 |
卷 期 | 21:5 1998.09[民87.09] |
頁 次 | 頁585-594 |
分類號 | 415.92 |
關鍵詞 | 腦波信號; 複雜度; Electroencephalogram; EEG; Complexity; Pattern recognition; |
語 文 | 英文(English) |
中文摘要 | 複雜度 C 可以對一個時序信號的規律與否做定量上的分析,在此研究中,複雜度 C 被用來分辨正常的與病態的腦波信號。為了研究上的需要,我們收集了正常人與中風病人 各 20 人的腦波信號, 每個受測者錄 16 個 channel 腦波信號各兩次, montage 則採用 unipolar 和 Laplacian 兩種。 實驗結果顯示:腦波信號並非複合的 (擬 ) 週期信號,也 不是白色雜訊,而且就同一受測者而言,複雜度 C 與腦波信號的段落和 montage 的選擇並 無關連, 但是正常人組的 C 值在統計上,比中風病人組的 C 值要來得高(信賴區間 0.01 )。為了驗證臨床上的適用性,兩種普遍被採用的圖型辨認的方法 (MLM 和 WDM) 被用來測 試辨認率,得到至少 95% 的辨認率,證明複雜度 C 適用於腦波信號的臨床診斷上。 |
英文摘要 | Complexity C can characterize the order or disorder of a time series and was used to discriminate between normal and abnormal electroencephalograms (EEG) in this study. Two classified groups of 20 normal and 20 apoplectic subjects were chosen for this experiment. Two segments of sixteen-channel EEG signals for every subject were measured by unipolar recording and Laplacian montage. The results for both groups showed that the EEG signals were neither pure compound (quasi) periodic waves nor white noise, and the statistical C values were almost independent of the chosen EEG segment, no matter what montage was adopted. Moreover, the statistical C values showed little significant difference between EEG data collected by unipolar recording and Laplacian montage for both populations. In addition, no matter what montage was taken, the values of C for the normal population weresignificantly higher than those of the apoplectic population at the 0.01 confidence level for each corresponding channel. In discriminating between normal and abnormal subjects by complexity C, two pattern recognition methods were applied and a recognition rate of 95% or above was obtained. We conclude that the measuring complexity C is a much simpler and more efficient method for clinical EEG diagnosis. |
本系統中英文摘要資訊取自各篇刊載內容。