查詢結果分析
來源資料
相關文獻
- An Application of the Dual Reciprocity Boundary Element Method in the Analysis of Three Dimensional Helmholtz Equation
- 波浪折射--繞射之微擾法與雙互換邊界元素法解析
- 製程設備電力品質容忍度
- 數位權利管理系統應用分析
- P2P魔尺、DRM道丈--美國5大唱片商、7大製片廠盡敗於P2P﹖
- P2P魔尺、DRM道丈--數位版權管理(DRM)技術與營運試行
- 數位權利管理的市場趨勢及技術展望
- 數位視訊內容服務版權使用介紹
- 基於MOT協定的DRM廣播資料業務實現
- DRM--機密文件保全防身術
頁籤選單縮合
題 名 | An Application of the Dual Reciprocity Boundary Element Method in the Analysis of Three Dimensional Helmholtz Equation=雙互換邊界元素法在三維荷姆茲方程式分析之應用 |
---|---|
作 者 | 王昭男; | 書刊名 | 中華民國音響學刊 |
卷 期 | 4:2 1997.06[民86.06] |
頁 次 | 頁1-13 |
分類號 | 448.5 |
關鍵詞 | 雙互換邊界元素法; 三維荷姆茲方程式; 傳統邊界元素法; DRM; BEM; |
語 文 | 英文(English) |
中文摘要 | 本文主要以雙互換邊界元素法( DRM )來分析由荷姆茲方程式所控制之音場問題 ,此方法之主要特徵為其使用拉普拉斯方程式之基本解,而非荷姆茲方程式之基本解,此時 基本解為實數且與頻率無關,因此,當進行頻譜分析時,僅須作一次邊界表面之積分即可, 不必如傳統邊界元素法須對每個頻率皆作一次邊界積分,因而可節省大量之計算時間。 文中以一單膨脹管為例,探討不同域內點數及選取之近似函數對此方法準確度之影響,同時 亦比較了傳統邊界元素法( BEM )與雙互換邊界元素法( DRM )在頻譜分析時之所須計算 時間之差異。 |
英文摘要 | In the present study the dual reciprocity boundary element (DRM) has been used to analyze the three dimensional acoustic problems governed by Helmholtz equation. The feature of DRM method is that the fundamental solution of the Laplace equation, instead of Helmholtz equation, has been adopted in the analysis process. Therefore, the fundamental solution is real and also frequency independent. In the frequency spectral analysis the boundary surface integral needed to be conducted only one time and thus the computational time is sharply reduced. A simple expansion chamber has been taken as an example to illustrate. The influences of the number of interior points, approximation functions and the gradient of the particular solution on the accuracy of the method are investigated and the computational times in the frequency spectral analysis for the traditional BEM and DRM are also compared. |
本系統中英文摘要資訊取自各篇刊載內容。