查詢結果分析
來源資料
相關文獻
- 人類足後跟軟組織層之機械性質
- The Effect of Changes in the Internal Structure of a Schooling Fish on the Estimation Efficiency by Acoustic Methods
- The Use of Stationary Hydroacoustic Transducer to Study Diel and Seasonal Influences on the Distribution of Fish School in Water Adjacent to the Cooling Water Intake of Nuclear Power Plant III
- Transcatheter Closure of Atrial Septal Defect Guided by On-Line Transesophageal Echocardiography
- Pelvic Abscess after Ultrasound-Guided Aspiration of Endometrioma: A Case Report
- 超音波、音波在齒內治療學上的應用
- Imaging Diagnosis of Intraductal Papillomas of the Breast
- 女子壘球投手投擲快速球與下墜球動作之運動學比較分析
- 國術騰空飛腳動作運動控制與協調系列研究(1)--運動學與地面反作用力特徵以及各關節的協調配合
- Airway Compression by a Biplane Pediatric Transesophageal Echocardiography Probe: Case Report
頁籤選單縮合
題名 | 人類足後跟軟組織層之機械性質=Mechanical Properties of the Human Heel Pad |
---|---|
作者 | 蔡文鐘; 王崇禮; 許智欽; 謝豐舟; Tsai, Wen-chung; Wang, Chung-li; Hsu, Chih-chin; Hsieh, Fon-jou; |
期刊 | 臺灣醫學 |
出版日期 | 19970700 |
卷期 | 1:4 1997.07[民86.07] |
頁次 | 頁417-423 |
分類號 | 416.26 |
語文 | chi |
關鍵詞 | 足後跟軟組織層; 超音波; 生物力學; Heel pad; Ultrasonography; Biomechanics; |
中文摘要 | 足後跟軟組織層在行走或跑步當中,會降低地面對人體的反作用力、提供良好的 避震效果( shock absorbency ),以減少全身骨骼肌肉的傷害。許多足跟疾病與足後跟軟 組織層的機械性質改變具密切關係。目前有關足後跟軟組織層的機械性質之研究結論差異頗 大,且無法於臨床上廣泛應用。因此本研究收集 20 位正常成年人(男 10 人,女 10 人) 為測試對象, 利用高頻率 10MHz, 直線形( linear array )超音波探頭與特製的壓縮 - 還原裝置系統來測量足後跟軟組織層在承受不同壓力的厚度。超音波探頭下壓重量以 0.5kg 為單位,逐漸增加至 3kg 為止;再依次遞減下壓重量。 根據下壓重量及足後跟軟組織層厚 度的改變量做出〞壓重-形變〞曲線;並算出能量散失百分比。測試所得平均足後跟軟組織 層的厚度為 1.71 ± 0.22cm,壓縮指數為 50.41 ± 4.54%, 能量散失百分比為 26.52 ± 6.84%,硬度為 3.58 ± 0.38kg/cm。兩腳的足後跟軟組織層厚度與體重呈強烈正相關。 |
英文摘要 | During the gait cycle, the heel pad reduces the impact force from the ground and offers good shock absorbency to prevent injury to the musculoskeletal system. Changes of the mechanical properties of the heel pad may lead to heel pain syndrome. However, there are no conclusive data regarding the mechanical properties of the heel pad. We thus measured the thickness of the heel pad in 20 adult volunteers (10 men, 10 women with mean age of 29.68 ± 5.29) without heel lesions. Measurements were performed sonographically, with a 10-MHz linear array transducer. A specially designed compression-relaxation device with a push scale clamped to the transducer was used to compress the heel pad. The heel pad was compressed by serial increments of 0.5 kg to a maximum of 3 kg, and then relaxed sequentially. The thickness of the heel pad under each loading condition was measured. The percentage energy dissipation during one loading and unloading cycle was calculated from the load-deformation curve. The mean (± SD) heel pad thickness with no loading was 1.71 ± 0.22cm. The mean (± SD) percentage energy dissipation, compressibility index and stiffness were 26.52 ± 6.84%, 50.41 ± 4.54% and 3.58 ± 0.38kg/cm, respectively. There was a strong positive correlation between heel pad thickness and body weight (r=0.60836, P=0.0001). |
本系統之摘要資訊系依該期刊論文摘要之資訊為主。