頁籤選單縮合
題 名 | 參數型立方迴旋內插法=Interpolation Via Parametric Cobic Convolution |
---|---|
作 者 | 蔡展榮; | 書刊名 | 中國土木水利工程學刊 |
卷 期 | 9:3 1997.09[民86.09] |
頁 次 | 頁483-490 |
分類號 | 440.9 |
關鍵詞 | 立方迴旋法; 低通濾波器; 內插; 梯度運算元; Parametric cubic convolution; Low-pass filter; Interpolation; Gradient operator; |
語 文 | 中文(Chinese) |
中文摘要 | 參數型立方迴旋內插法(PCC)函數可應用於網格狀分佈的參考點之間的內插。在參考點 上,其內插曲線或曲面為一個一階連續的平滑函數。在PCC內插法裡,合宜的函數參數值k及由待 內插訊號的頻譜而定、可藉著訊號頻譜分析等各式方法選定之。本文由簡單的實例與頻譜分析得知, 對一般的內插╱近似法要表達的低頻訊號而言,最合宜的參數值並非一般常用的標準值k=-1 ,而 是-0.75≦k≦-0.5。此外,本文亦提出由PCC插法推導出的一個十分簡易的、對稱的梯度運算元, 可供使用。 |
英文摘要 | The parametric cubic convolution ( PCC ) function can be used to perform interpolation among given reference points that are located at some equidistant grid points with known reference data. The interpolated curve or surface is C□-continuous at those reference points. PCC contains an important parameter, denoted by k. The suitable k-value depends on the frequency spectrum of the interpolation signal represented by the given reference data. It can be determined by certain methods such as the related frequency analysis. In this paper, some interpolation examples are shown by using the related frequency analysis. It is concluded that, for a low-frequency signal represented by general approximation or interpolation methods, the available k-value is in the range of-0.75≦k≦-0.5 instead of the standard value of -1. A simple, symmetrical gradient operator derived from the interpolation via PCC is suggested. |
本系統中英文摘要資訊取自各篇刊載內容。