查詢結果分析
相關文獻
- 注入體積對分析徑向收斂流場追蹤劑試驗之影響
- 徑向收斂流場下延散效應之分析
- 應用一維污染物傳輸方程式於天然氣儲存工程示蹤試驗之設計
- 破裂岩層中溶質傳輸之徑向延散模式分析及應用於示蹤劑試驗
- 廢水物理化學處理功能診斷及案例
- 孔隙流速與土壤結構對夯實黏土溶質傳送的影響
- 含水層示蹤試驗及其應用於地下水污染之預測與調查之討論
- Comparison of Quasi-Newton Methods for Parameter Identification in Finite-Element Models for Groundwater Contaminant Transport Simulation
- 含水層示蹤試驗及其應用於地下水污染之預測與調查
- Hydraulic Characteristics and Startup of Anaerobic Rotating Biological Contactors
頁籤選單縮合
題 名 | 注入體積對分析徑向收斂流場追蹤劑試驗之影響=The Injected Volume Effect on the Analysis of Radially Convergent Tracer Test |
---|---|
作 者 | 陳瑞昇; 劉振宇; | 書刊名 | 中國環境工程學刊 |
卷 期 | 7:2 1997.06[民86.06] |
頁 次 | 頁133-139 |
分類號 | 445.46 |
關鍵詞 | 追蹤劑試驗; 注入體積; 延散度; Tracer test; Injected volume; Dispersivity; |
語 文 | 中文(Chinese) |
中文摘要 | 追蹤劑試驗的主要目的為瞭解含水層之現場水文地質特性,包括估算含水層之孔隙率和延散係數等水文地質及溶質傳輸參數,而其分析之方法通常藉由數學模式。在大部份數學模式之研究通常都假設初始追蹤劑體積為無窮小,因此可將初始污染團視為Diracdelta函數而易於求解。然而實際上初始注入追蹤劑必佔有一定體積,故有限體積之影響須加以評估。本文根據Carrera and Walters 概念,發展一Laplace有限差分模式來探討有限初始追蹤劑體積對溶質傳輸之可能影響。 研究結果顯示所得之數值解經與以Dirac delta函數為注入之解析解比較發現,考慮初始追蹤體積將造成尖峰濃度降低和穿透曲線之向左右擴延。此效應在大Peclet number較為明顯但對小的Peclet number則可忽略。將有因次穿透曲線重新繪製成無因次穿透曲線,兩者估算所得之延散度並不相同。忽略追蹤劑初始體積將高估含水量之延散度,惟其差距並不大,故在一般應用上應可忽略其影響。 |
英文摘要 | The purpose of tracer tests is to understand the hydrogeologic characteristics of an aquifer, which includes the estimation of the aquifer porosity and dispersion coefficient. The analysis requires the use of mathematical modeling. Generally, the mathematical model is based on the basic assumption that the size of the tracer plume at the initial time is negligibly small. This allows us to treat the initial plume as a Dirac delta function, and the solution is easily obtained. In fact the tracer occupies a finite volume. The effect of an initial slug of finite size is worthy to be studied. Based on the concept of Carrera and Walters, a Laplace transform finite difference model is developed to estimate the effect of initial tracer volume. By comparing Laplace transform finite difference solution for tracer test with the Dirac delta function as input, it may be concluded that the presence of initial finite volume causes a decrease in peak concention, and outward spreading of breakthrough curves. The effect is significant for large Peclet numbers but can be neglected for small Peclet numbers. If the dimensional breakthrough curve is converted to a dimensionless type curve, the dispersivities estimated from these two methods are different. By neglecting the finite volume of the initial plume, the analytical solution by Dirac delta function input overestimates the dispersivity. However, the differences between these two type curves are not significant. It is suggested that this effect may be neglected in the analysis of data from field tests. |
本系統中英文摘要資訊取自各篇刊載內容。