查詢結果分析
來源資料
相關文獻
- A Generalized Chebyshev Type Partial Differential Equation Via Fractional Calculus Method
- On the Fractional Calculus(e礼戸(z-a)[fef5])β)α)and (((z-a)[fef5])β.e )α
- Particular Solutions of Riemann's Differential Equations by N-fractional Calculus Operator N广
- Generalized Weber Equations via Fractional Calculus
- Particular Solutions for Linear Third Order Differential Equations by N-Fractional Calculus Operator N
- Certain Subclasses of Univalent Functions and an Application of the Fractional Calculus
- A Certain Family of Infinite Sums via Fractional Calculus
- A Linear Third Order (Nonhomogeneous and Homogeneos), Partial and Higher Order Differential Equatons of Fuchs Type Via Fractional Calculus Method
- Solutions of a Class of Third Order Ordinary and Partial Differential Equations Via Fractional Calculus Ⅱ
- Solutions of a Class of Third Order Ordinary and Partial Differential Equations Via Fractional Calculus
頁籤選單縮合
| 題 名 | A Generalized Chebyshev Type Partial Differential Equation Via Fractional Calculus Method=利用分數微積分探討一般的Chebyshev型偏微分方程式 |
|---|---|
| 作 者 | 林賜德; 李春宜; | 書刊名 | 樹德學報 |
| 卷 期 | 19 1997.03[民86.03] |
| 頁 次 | 頁287-302 |
| 分類號 | 314.223 |
| 關鍵詞 | 分數微積分; Chebyshev型偏微分方程式; |
| 語 文 | 英文(English) |
| 中文摘要 | 由K. Nishmots利用分收微積分把很有名的Chebshev型微分方程推廣至n階常微分 方程, 然後由 S.T.Tu 和 Changchein 做到 n 階常微分方程,現在這篇論文由我們二位再 推廣至 n 階偏微分方程。 |
| 英文摘要 | From the famous Chebshev type differential equation, K. Nishmoto first developed to second order, then S. T. Tu and Changchein Further developed to n-th order. The paper, now in turn, developes the n-th order ordinary differential equation to n-th order partial differential equation. |
本系統中英文摘要資訊取自各篇刊載內容。