查詢結果分析
相關文獻
- Optimal Regression Designs under Random Block-effects Models
- Optimal, Non-Binary, Variance Balanced Designs
- Optimal Block Designs with Minimal and Nearly Minimal Number of Units
- Contingently and Virtually Balanced Incomplete Block Designs and Their Efficiencies under Various Optimality Criteria
- Approximate Information Matrices for Estimating a Given Set of Contrasts
- Optimality Aspects of Agrawal's Designs: PartⅡ
- Efficient Block Designs in the Presence of Trends
- Efficient Semi-Latin Squares
- 平面近環、平衡不完全區組設計及密碼學
- 從西爾威斯特問題講起﹣﹣談區組設計的大集
頁籤選單縮合
題 名 | Approximate Information Matrices for Estimating a Given Set of Contrasts |
---|---|
作 者 | Kao,L. J.; Yates,P. K.; Lewis,S. M.; Dean,A. M.; | 書刊名 | Statistica Sinica |
卷 期 | 5:2 1995.07[民84.07] |
頁 次 | 頁593-598 |
分類號 | 319.28 |
關鍵詞 | 區組設計; A-criterion; Approximate information matrix; Block designs; Contrasts; |
語 文 | 英文(English) |
英文摘要 | This paper considers the construction of block designs for estimating given sets of treatment contrasts. Necessary and sufficient conditions are given for the form of the matrix M which minimizes the trace of HM⁻ H¹, where H is the contrast matrix. The application of this result in constructing highly efficient designs is illustrated. |
本系統中英文摘要資訊取自各篇刊載內容。