查詢結果分析
相關文獻
- 多項式迴歸的貝氏選模
- D-Optimal Designs for Polynomial Regression without an Intercept
- Optimal Designs for Polynomial Regression When the Degree is Not Known
- 多項式迴歸模型下之正合D-最適設計
- 薪資滿意與情緒勞務關係之研究--以北部某教學醫院為例
- 主管與同事關係品質對建言行為的非線性關係 : 心理安全知覺的中介角色
- Ds-optimal Designs for Weighted Polynomial Regression
- 應用 Spline 迴歸與延伸線性混合效果模式於多層縱向資料分析之實例研究
- 臺灣地區死亡率推估的實證方法之研究
- Chain Ladder考量通貨膨脹對於IBNR估計之影響:ARIMA vs. 局部多項式迴歸
頁籤選單縮合
題 名 | D-Optimal Designs for Polynomial Regression without an Intercept |
---|---|
作 者 | Lo Huang,Mong-na; Chang,Fu-chuen; Wong,Weng-kee; | 書刊名 | Statistica Sinica |
卷 期 | 5:2 1995.07[民84.07] |
頁 次 | 頁441-458 |
分類號 | 319.51 |
關鍵詞 | 多項式迴歸; D-and G-efficiency; Information matrix; Jacobi polynomial; Lagrange interpolation polynomial; Sturm-liouville equation; |
語 文 | 英文(English) |
英文摘要 | D-optimal designs on the intervals [a, b] are determined for the homoscedastic linear model with regression function f□(x) = (x, …, x[fee2]). Motivation, properties and peculiarities of these designs are provided. In particular, the number of support points of the optimal designs for such models depends on the values of a and b, as well as an ordered eigenvalue of certain matrix. Analytical results are derived for selected values of a and b, and where they are not available, numerically optimal designs are computed. The technique here can be used to find optimal designs on more general design intervals and extend some known results (for example, Lau (1983)). Under the model considered here lower D- and G-efficiency bounds of the D-optimal design for the full polynomial model are included. |
本系統中英文摘要資訊取自各篇刊載內容。