查詢結果分析
相關文獻
- 運用灰色預測模型分析陸客來臺觀光人數
- 不確定性環境下比較灰色預測模型績效
- 預測方法之比較--以臺灣電力負載預測為例
- 以灰色理論作電力變壓器油中氣體含量預測
- Establishment and Application of Grey Prediction Model for Overdue Loan Risk in Financial Institutions
- 殘差修正之灰色模型應用於財務比率預測
- 臺灣地區區域需電預測--改良型灰色殘差修正模型之應用
- 應用灰色理論預測臺灣糖果產業銷售量之研究
- 整合灰色預測模型與S型成長模型探測產品生命週期策略
- 以灰色預測模型處理人體計測資料遺漏值及異常值的應用研究
頁籤選單縮合
題 名 | 運用灰色預測模型分析陸客來臺觀光人數=Using Gray Prediction Model on the Number of Chinese Tourists to Taiwan |
---|---|
作 者 | 吳仁明; | 書刊名 | 觀光與休閒管理期刊 |
卷 期 | 5:1 2017.06[民106.06] |
頁 次 | 頁14-27 |
分類號 | 992.1 |
關鍵詞 | 灰色預測模型; 灰色Verhulst; 陸客觀光; GM(1,1); Gray prediction model; Gray Verhulst; Chinese tourist; |
語 文 | 中文(Chinese) |
中文摘要 | 近年來在大陸當局刻意開放來台觀光下,陸客人次逐年增加,由2008年329,204人次增加至2015年4,184,102人次,但自2016年以後陸客又因政治因素,人數開始減少。在如此複雜多變的兩岸局勢中,依據過去經驗及機率推算的傳統統計分析,勢必難以預測充滿風險的未來,為求台灣觀光產業能在最短期間內,提出有效對策以因應未來的發展,在有限及不確定性的數據下,灰色預測模型有效率的推測是極具意義的。本研究利用2016年1~4月及5~8月兩組大陸來台觀光人數為樣本,使用灰色理論建構,針對不確定性環境下及資訊不完整下進行動態狀況預測,GM(1,1)與灰色Verhulst模型是較常見的選用。根據本研究以真實對照兩模式預估陸客來台觀光人數而言,GM(1,1)模式均較Verhulst模式推估更為準確,不論是各期的誤差值,還是未來各月人數估算,GM(1,1)模式都能根據當月資料做立即的反應與預判。 |
英文摘要 | The Chinese mainland government deliberately opened to visit Taiwan in recent years, the number of Chinese tourists increased year by year from 329,204 in 2008 to 4,184,102 passengers in 2015, but since 2016 due to political factors, the number of Chinese tourists began to decrease. In such a complex and volatile cross-strait situation, the traditional statistical analysis based on past experience and probability will inevitably make it difficult to predict the risky future. In order to make the Taiwan tourism industry in the shortest possible time, put forward effective countermeasures, in view of the future development. The prediction of the efficiency of Gray prediction model is very meaningful under limited and uncertain data. In this study, we use the gray theory to construct the forecasting of the dynamic situation under the uncertain environment and the incomplete information, using the two groups of mainland tourists from January to April in 2016 and from May to August in 2016 as samples. GM (1,1) and Gray Verhulst model is the more common choice. According to this study to predict the actual control of two models to the number of visitors to Taiwan tourists, the GM (1,1) model is more accurate than the Gray Verhulst model in terms of the number of tourists. Whether the errors or the number of future estimates of the month, GM (1,1) model can be based on the information to do the immediate response and anticipation. |
本系統中英文摘要資訊取自各篇刊載內容。