查詢結果分析
來源資料
相關文獻
- 基於直方圖更新之混合粒子濾波法於追隨機器人之應用
- 基於開迴路單眼視覺運動控制的移動目標追蹤
- 手寫數字辨識模式之建立--結合遺傳演算法與類神經網路
- Genetic Programming for Classification of Remote Sensing Data
- Form Segmentation and Component Classification for Clinic Document Image Analysis
- 倒傳遞類神經網路在波浪時序列預報之應用
- 達成中央空調舒適度與省能控制之研究
- 應用於洪水演算類神經倒傳遞網路法最適參數推估
- 類神經網路應用於房地產估價之研究
- 運用類神經網路建構臺灣地區農會信用部金融預警系統
頁籤選單縮合
題 名 | 基於直方圖更新之混合粒子濾波法於追隨機器人之應用=A Histogram Updating-based Hybrid Particle Filter for Follower Robot Applications |
---|---|
作 者 | 周佑誠; 彭柏嘉; | 書刊名 | 先進工程學刊 |
卷 期 | 10:1 2015.01[民104.01] |
頁 次 | 頁9-17 |
分類號 | 312.13 |
關鍵詞 | 粒子濾波; 倒傳遞類神經網路; 機器學習; 目標追蹤; 機器視覺運動控制; 移動機器人; Particle filter; AdaBoost; Back propagation neural network; Machine learning; Object tracking; Machine vision-based motion control; Mobile robot; |
語 文 | 中文(Chinese) |
中文摘要 | 本文提出一種基於直方圖更新的混合粒子濾波法,藉由結合AdaBoost分類器與傳統粒子濾波法,改善傳統粒子濾波法之目標追蹤效率。首先,利用AdaBoost 分類器能夠快速分辨目標物與背景的特性,來偵測目標物在影像中的位置,並周期性地更新目標物的參考色彩直方圖,以供粒子濾波器使用;接著,由粒子濾波器對目標物作預測、量測的動作,以找出最有可能是目標物的位置;最後,由訓練後的倒傳遞類神經網路,將目標物的影像資訊轉換為真實的座標資訊,以達到追蹤之目的。本文進行了在不同粒子數與不同光照環境下的L型追蹤,以及目標物消失後再出現之不同追蹤實驗,並與傳統粒子濾波法比較。由實驗結果顯示,本文所提出之方法在以上實驗能達到良好的追蹤效果,且效果優於傳統粒子濾波法。 |
英文摘要 | This paper presents a histogram updating-based hybrid particle filter for object tracking robot applications. In the proposed method, a well-trained AdaBoost classifier periodically detects the object's location in an image and generates a new reference color histogram for the object. The new reference color histogram is then used by a traditional particle filter to perform the prediction, measurement, and sorting operations, in order to produce the moving object's most possible location in an image at the current time-step. The obtained location is then passed to well-trained back propagation neural networks to generate the moving object's polar coordinate, including the distance and angle, relative to the follower robot. Eventually, the obtained polar coordinate is used to create speed and rotation commands, which make the follower robot move towards the object, in order to keep it in the camera's central field of view. Different experiments, including the L-shape tracking under different number of particles and different lighting conditions, and the tracking of an object that temporally disappears from the camera's field of view, are conducted using both the presented hybrid particle filter and traditional particle filter. Experimental results show that the presented hybrid particle filter outperforms the traditional particle filter. |
本系統中英文摘要資訊取自各篇刊載內容。