查詢結果分析
相關文獻
- 中文色塊測驗認知成分分析:LLTM與SEM取向
- 結構方程模式的應用--驗證性因素分析
- 體育教師幽默量表之編製--以澎湖科技大學為例
- 高雄地區科大學生在休閒阻礙、休閒調適與效益模式之實證研究
- 以廣告態度中介模式驗證比較性廣告效果
- 數字系列完成測驗試題認知成分分析之研究
- 態度測量與心理測驗發展與檢驗的新趨勢--結構方程模式(Structural Equation Modeling)的應用
- 應用修改後健康信念模式探討青少年無照騎車行為之影響因素
- Analysis of Two-Level Structural Equation Models via EM Type Algorithms
- 自然科實作評量的效度探討
頁籤選單縮合
題名 | 中文色塊測驗認知成分分析:LLTM與SEM取向=Validation of Cognitive Structures for the Mandarin Token Test: The Linear Logistic Test Model and Structural Equation Modeling |
---|---|
作者 | 林月仙; Lin, Yueh-hsien; |
期刊 | 教育與心理研究 |
出版日期 | 20130600 |
卷期 | 36:2 2013.06[民102.06] |
頁次 | 頁113-144 |
分類號 | 176.3 |
語文 | chi |
關鍵詞 | 中文色塊測驗; 建構效度; 結構方程模式; 認知成分分析; 線性logistic測驗模式; Mandarin Token Test; Construct validity; Structural equation model; Validation of cognitive structures; Linear logistic test model; |
中文摘要 | 本研究分別以Fischer的線性logistic測驗模式和逐步回歸法對中文色塊測驗進行認知成分分析,並使用結構方程模式檢驗依認知成分加權矩陣建立的試題難度順序結構模式,藉以檢驗中文色塊測驗的建構效度。本研究樣本是依臺灣北、中、南三區六足歲兒童人口比率選取的500位幼兒,主要研究結果有:一、線性logistic測驗模式的認知成分分析結果顯示大小、顏色、方位和順序等四個認知成分,能精簡且有效解釋中文色塊測驗試題之難度變異;二、逐步回歸法得到的認知成分參數估計值與線性logistic測驗模式分析結果相當一致;三、結構方程模式分析結果顯示,實證資料與試題難度順序結構模式適配度良好,受試者在較基礎試題之表現,可預測其在較複雜試題(包括的認知成分多於預測變項)的表現。 |
英文摘要 | This study was aimed at validating the cognitive structures embedded in the Mandarin Token Test (MTT) with Fischer’s linear logistic test model (LLTM) and stepwise regression methodology. Besides, the validation procedure was also based on structural equation modeling of cognitive subordination relationships between test items. Five hundred six-year old children were sampled according to regional distribution of Taiwan’s population. The results showed, firstly, that four major cognitive structures (i.e., size, color, position, and sequence) could adequately explain major variations of the MTT’s item difficulty. Secondly, results from the stepwise regression model were consistent with the LLTM results. Lastly, there was a good fit between the empirical data and the structural equation modeling of cognitive subordination relationships between test items; that is, participants’ performance on lower-level items could successfully predict their performance on higher-level items. |
本系統之摘要資訊系依該期刊論文摘要之資訊為主。