查詢結果分析
相關文獻
- An ARL-unbiased Approach to Setting Control Limits of CCC-r Chart for High-Yield Processes
- 管制具群聚現象不合格點數之累和管制法
- X-管制圖條件管制界限之建構與分析--以AR(1)相關性資料為例
- 雙重EWMA管制法之設計研究
- Dual Shewhart Control Scheme for Monitoring the Autocorrelated Processes
- 區間管制圖之區間給分方法的研究
- A Control Chart Using Copula-Based Markov Chain Models
- 應用支援向量回歸建立製程/產品剖面資料之監控程序
- A Study on Using the Moving Average Chart for Monitoring Time-between-Events
- 單邊累計合格數管制圖監控高良率製程之方法
頁籤選單縮合
題 名 | An ARL-unbiased Approach to Setting Control Limits of CCC-r Chart for High-Yield Processes=監控高產出製程之CCC-r管制圖管制界限最佳化之研究 |
---|---|
作 者 | 陳佩雯; 鄭春生; | 書刊名 | 品質學報 |
卷 期 | 17:6 2010.12[民99.12] |
頁 次 | 頁435-452 |
分類號 | 494.56 |
關鍵詞 | CCC-r管制圖; 平均連串長度; 高產出製程; CCC-r chart; ARL-unbiased; High-yield processes; |
語 文 | 英文(English) |
中文摘要 | 摘 要 由於蕭華特p 管制圖並不適用於監控不合格率很低之高產出製程,有學者建議改以累積 合格品數管制圖 (cumulative count of conforming chart,簡稱CCC 管制圖) 作為p 管制圖之替 代方法。不同於p 管制圖著重於管制某特定樣本數之內的不合格品數目,CCC 管制圖將檢驗 出一個不合格品之前,所需檢驗之累積樣本數 (合格品數) 作為管制變數,研究結果顯示當製 程不合格率很低時,使用 CCC 管制圖進行監控之績效優於傳統p 管制圖。為了進一步提升 CCC 管制圖之靈敏度,有學者進一步提出將管制變數延伸至檢驗出第r 個不合格品發生前之 累積檢驗樣本數,並稱之為CCC − r管制圖。由於CCC − r管制圖之判斷依據涵蓋較多組樣本 資訊,因此對於製程參數之微量偏移具有較佳的偵測能力。 雖然CCC − r管制圖對於監控高產出製程具有不錯之成效,但當製程不合格率開始偏離目 標值時,其平均連串長度 (average run length,簡稱ARL) 呈現增加之趨勢,表示CCC − r管 制圖無法快速偵測出製程不合格率增加之情形。此現象稱之為 ARL-biased。為解決此問題,本 研究推導CCC − r管制圖之管制界限調整係數,並建立其迴歸模型以方便管理者使用。研究結 果證實藉由調整係數修正後之管制界限,能夠消除CCC − r管制圖之ARL-biased 的現象,同 時,能夠有效降低CCC − r管制圖對於偵測製程不合格率增加之反應時間,提升偵測製程退化 之敏感度。 |
英文摘要 | Abstract The cumulative count of conforming (CCC) chart is a new type of statistical process control technique for monitoring high-yield processes. Rather than counting the number of nonconforming items in a fixed sample size, a CCC chart monitors the cumulative number of items inspected until observing one nonconforming item. The CCC chart has shown to be superior to the traditional p chart in monitoring the fraction nonconforming of a high-yield process. The CCC − r chart is an improvement of the CCC chart. It monitors the cumulative number of items inspected until the rth nonconforming item is observed based on negative binomial distribution. Due to the skewness of negative binomial distribution, the CCC − r chart usually shows an ARL-biased performance. In this paper, we introduce an ARL-unbiased design of the CCC − r chart. The ARL-unbiased design involves the determination of an adjustment factor of the existing control limits. Extensive numerical work shows that our approach can produce ARL-unbiased or nearly ARL-unbiased performance. In addition, the proposed approach shows more superiority in detecting process deteriorations, which is the major concern in high-yield processes. For simplification, a regression model is derived in this research. An adjustment factor can be calculated by specifying a predetermined false alarm rate α and the in-control nonconforming rate 0 p to the regression equation. Then, the optimal control limits of an ARL-unbiased CCC − r chart can be easily obtained. An illustrative example is also presented to illustrate the proposed design procedure. |
本系統中英文摘要資訊取自各篇刊載內容。