查詢結果分析
來源資料
相關文獻
- Packing and Covering Complete Bipartite Multidigraphs with 4-Circuits
- Packing Complete Tripartite Multidigraphs with 4-circuits
- Packing and Covering Multicrowns with 4-cycles
- Packing and Covering Complete Graphs with 3- and 4-paths
- Minimum Leaves of Complete Multidigraphs by Packing Directed 4-cycles
- 根尖充填材對人類牙齦造纖維細胞之毒性效應
- Packing 4-cycles into Complete Multigraphs
- (Pκ,Sκ)-Multidecomposition of C□,□
- Covering λ-fold Complete Symmetric Digraphs with 4-circuits
- 光色對植物生長的效應
頁籤選單縮合
題 名 | Packing and Covering Complete Bipartite Multidigraphs with 4-Circuits=完全二部重邊有向圖之4迴圈充填與覆蓋 |
---|---|
作 者 | 吳文娟; 李鴻志; 林正忠; | 書刊名 | 嶺東學報 |
卷 期 | 24 2008.12[民97.12] |
頁 次 | 頁223-231 |
分類號 | 319.9 |
關鍵詞 | 充填; 覆蓋; 完全二部重邊有向圖; 有向迴圈; 餘圖; 超額圖; 充填數; 覆蓋數; Packing; Covering; Complete bipartite multidigraph; Circuit; Leave; Excess; Packing number; Covering number; |
語 文 | 英文(English) |
中文摘要 | 設C(下標 k)表長度爲k之有向迴圈。重邊有向圖G中,若一個邊互斥的有向子圖集P={G1, G2,…,G(下標 s)},其中每個G(下標 i)皆同構於C(下標 k),則稱P爲G的一個C(下標 k)-充填,若該充填具有最多元素(C(下標 k)),則稱其爲最大C(下標 k)-充填;若一個有向子圖集,R={G1, G2,…, G(下標 t)},其中每個G(下標 i)皆同構於C(下標 k),且G的每個邊(重複邊視爲相異邊)至少在R中出現一次,則稱R爲G的一個C(下標 k)-覆蓋,若該覆蓋具有最少元素(C(下標 k)),則稱其爲最小C(下標 k)-覆蓋。本文得到完全二部重邊有向圖之最大C4-充填與最小C4-覆蓋。 |
英文摘要 | Let C(subscript k) denote a circuit of length k. In a multidigraph G, a C(subscript k)-packing is a set P={G1, G2,…, G(subscript s)} of arc-disjoint subdigraphs of G such that each G(subscript i) is isomorphic to C(subscript k), and a C(subscript k)-packing is maximum if it has the maximum number of members among all packings; a C(subscript k)-covering is a set R={G1, G2,…, G(subscript t)} of subdigraphs of G such that each G(subscript i) is isomorphic to C(subscript k) and every arc of G appears in at least one member of R, and a C(subscript k) covering is minimum if it has the minimum number of members among all coverings. In this paper the problem for finding a maximum C4-packing and a minimum C4-covering of the complete bipartite multidigraph is solved. |
本系統中英文摘要資訊取自各篇刊載內容。