查詢結果分析
來源資料
相關文獻
- 碎形於幾何史之典範轉移上的啟示
- 碎形理論與波浪理論的應用分析
- 以碎形為基礎之地形模擬與分析
- Fractal Image Coding Using Projection-Based Classification and Variable Shape Matching
- 以Cantor集觀念解析水文變量在時間尺度上之行為
- A Maximum Likelihood Estimator and Fractal Analysis of Medical Images
- 儒家哲學在心理學上的意涵
- Fractal Extraction from a Mixed FBM Signal Using Discrete Wavelet Transforms
- 環境公民與社會足跡--環境社會學的永續發展觀
- 地理資訊系統和碎形維度於森林地景空間變化上之應用
頁籤選單縮合
題 名 | 碎形於幾何史之典範轉移上的啟示=The Indications of Fractal through Paradigm Shifts of Geometry History |
---|---|
作 者 | 謝寶泰; | 書刊名 | 商業設計學報 |
卷 期 | 8 2004.07[民93.07] |
頁 次 | 頁273-282 |
分類號 | 962 |
關鍵詞 | 碎形; 典範轉移; Fractal; Paradigm shift; |
語 文 | 中文(Chinese) |
中文摘要 | 本文以孔恩(Thomas Kuhn)的典範轉移(paradigm shift)觀點追溯幾何史上的八種典範轉移-歐氏幾何、人是萬物的尺度、投影學、笛卡兒十字座標、磚花、對稱群、非歐氏幾何及碎形(fractal)-在造形設計上的影響。 由於碎形是晚近新創的理論,其學理與應用仍在持續發展中,因此,本文概述各個幾何典範轉移之後,側重在碎形的描述及新啟示的探索,這些新啟示包括「以新思維看」、「主觀定客觀」、「簡單蘊複雜」、「明確生難測」、「以電腦創新」等五大項,並認為躬逢此新典範伊始之際,探索新幾何是明智的抉擇。 |
英文摘要 | By applying the ideas of Thomas Kuhn's 'paradigm shift' to geometry history, this paper chooses 'Euclidean Geometry', 'Measure of Human', 'Projection', 'Descartes' coordinate', Tessellation', 'Group Theory', 'Non-Euclidean Geometry' and 'Fractal' as paradigm shifts in the geometry history, and reviews their influences on the design of forms. Since fractal is a new theory, its indications and applications are still under development. This research paper focus on its indications and concludes that (1) 'seeing with new thinking', (2) 'making objective with subjective', (3) 'revealing complexity with simplicity', (4) 'having unpredictability with determinism', (5) 'applying computer to innovation' are five indications of fractal. Additionally, this paper considers that it is a good choice to explore this new geometry as one that has the opportunity to encounter the growing of this new paradigm shift of geometry. |
本系統中英文摘要資訊取自各篇刊載內容。