頁籤選單縮合
題 名 | Derivatins Cocentralizing Polynomials |
---|---|
作 者 | 李秋坤; 薛文魁; | 書刊名 | Taiwanese Journal of Mathematics |
卷 期 | 2:4 1998.12[民87.12] |
頁 次 | 頁457-467 |
分類號 | 313.17 |
關鍵詞 | Derivation; PI; GPI; Prime ring; Differential identity; |
語 文 | 英文(English) |
英文摘要 | Let R be a prime ring with extended centroid C and f(X��,...,Xt) a polynomial over C which is not central-valued on RC. Suppose that d and δ are two derivations of R such that d(f(x ��,..., Xt))f(X ��,...,Xt)-f(X ��,...Xt) δ (f(X ��,...,Xt)) C for all X ��,...,Xt in R. Then either d=0= δ, or δ =-d and f(X ��,...,Xt) �� is central-valued on RC, except when char R=2 and dimc RC=4. This paper is motivated by a result of Wong [14]. In [14], Wong proved the following result. |
本系統中英文摘要資訊取自各篇刊載內容。