頁籤選單縮合
題 名 | Generalized Thresholding Estimators for High-Dimensional Location Parameters |
---|---|
作 者 | Zhang, Min; Zhang, Dabao; Wells, Martin T.; | 書刊名 | Statistica Sinica |
卷 期 | 20:2 2010.04[民99.04] |
頁 次 | 頁911-926 |
分類號 | 319.5 |
關鍵詞 | Asymmetric parameter space; Bayes construction; Empirical Bayes; Sparse parameter space; Thresholding; |
語 文 | 英文(English) |
英文摘要 | Abstract: Analyzing high-throughput genomic, proteomic, and metabolomic data usually involves estimating high-dimensional location parameters. Thresholding estimators can significantly improve such estimation when many parameters are zero, i.e., parameters are sparse. Several such estimators have been constructed to be adaptive to parameter sparsity. However, they assume that the underlying parameter spaces are symmetric. Since many applications present asymmetry parameter spaces, we introduce a class of generalized thresholding estimators. A construction of these estimators is developed using a Bayes approach, where an important constraint on the hyperparameters is identified. A generalized empirical Bayes implementation is presented for estimating high-dimensional yet sparse normal means. This implementation provides generalized thresholding estimators which are adaptive to both sparsity and asymmetry of high-dimensional parameters. |
本系統中英文摘要資訊取自各篇刊載內容。