頁籤選單縮合
題 名 | Dirichlet Prior Sieves in Finite Normal Mixtures |
---|---|
作 者 | Ishwaran,Hemant; Zarepour,Mahmoud; | 書刊名 | Statistica Sinica |
卷 期 | 12:3 2002.07[民91.07] |
頁 次 | 頁941-963 |
分類號 | 319.5 |
關鍵詞 | Bose-einstein distribution; Dirichlet process; Identification; Method of sieves; Random probability measure; Relative entropy; Weak convergence; |
語 文 | 英文(English) |
英文摘要 | The use of a finite dimensional Dirichlet prior in the finite normal mixture model has the effect of acting like a Bayesian method of sieves. Posterior consistency is directly related to the dimension of the sieve and the choice of the Dirichlet parameters in the prior. We find that naive use of the popular uniform Dirichlet prior leads to an inconsistent posterior. However, a simple adjustment to the parameters in the prior induces a random probability measure that approximates the Dirichlet process and yields a posterior that is strongly consistent for the density and weakly consistent for the unknown mixing distribution. The dimension of the resulting sieve can be selected easily in practice and a simple and efficient Gibbs sampler can be used to sample the posterior of the mixing distribution. |
本系統中英文摘要資訊取自各篇刊載內容。