頁籤選單縮合
題 名 | Optimal Designs for First-order Trigonometric Regression on a Partial Cycle |
---|---|
作 者 | Wu,Huaiqing; | 書刊名 | Statistica Sinica |
卷 期 | 12:3 2002.07[民91.07] |
頁 次 | 頁917-930 |
分類號 | 319.51 |
關鍵詞 | A-optimality; D-optimality; Efficiency; E-optimality; Equidistant sampling; Exact design; -criterion; |
語 文 | 英文(English) |
英文摘要 | Trigonometric regression is commonly used to describe cyclic phenomena that occur in the engineering, biological, and medical sciences. Optimal designs for this model on a complete cycle have been studied extensively in the literature. However, much less attention has been paid to the design problem with a partial cycle. This paper solves this problem for the first-order trigonometric regression. Explicit D-, A-, and E-optimal designs are analytically derived. These designs are used to evaluate the D-, A-, and E-efficiencies of the equidistant sampling method commonly used in practice. Efficient and practical designs are then suggested. Some optimal exact designs and optimal designs for all nontrivial subsets of the coefficients are also obtained. A discussion is made on the øp-optimal designs (p□[-∞, 1]) for the general trigonometric regression on a partial cycle. |
本系統中英文摘要資訊取自各篇刊載內容。