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ABSTRACT

Numerical solutions are presented for the steady flow corresponding to a two-dimensional moving
droplet with circulation subject to the gravity and surface tension force. Solutions to the nondimensionalized
system depend on four parameters-- the Atwood number A, the Froude number /¢, the surface tension
coefficient 7, and the intensity of vorticity inside the droplet Q. The roles of these parameters in deter-
mining the stationary solution are studied. It is found the droplet is less deformed with larger €| and 7.
Features of the surrounding flow in selected combinations of the parameters are discussed, and numerical
computations are confirmed by pertubation analysis for small A.
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L. INTRODUCTION

A 2D fluid droplet of density p, surrounded by an un-
bounded fluid of different density p, experiences a buoy-
ancy force F=—g(p—p;)ay in which a is the area of the
droplet. One possibility for balancing this buoyancy force
is through the lift of the Magnus effect. If the droplet is
moving at speed U in the x-direction and has circulation I
and if the ambient fluid is irrotational, then this lift force is
F=-TUp,y . Thus there is a balance between these two
forces if

FU==ga(p\=p2)ip>. (1.1

A new class of steady, 2D vortical flows for which
there is a balance between the buoyancy force F,, and the
lift force F; has been numerically constructed and analyti-
cally confirmed by the author and R. Caflisch [2]. In [2],
the fluids are incompressible and inviscid, and the outer
fluid is assumed to be irrotational. Within this “flying drop-
let” the vorticity —€2 is assumed to be a uniform constant;
while the droplet boundary may consist of a vortex sheet
of net circulation I'y. The total circulation of the droplet is
then I'=-aQ+I’;. Only symmetric solutions were investi-
gated in [2], probably due to the same restriction pointed
outin {1].

The resulting solutions in [2] show several interesting
features. First of all, these flows are of Prandtl-Batchelor
type, which are flows of a single fluid consisting of re-

gions of constant vorticity surrounded by vortex sheets.
After nondimensionalization, the solution is found to de-
pend on three parameters: the Atwood number A=(p,—
P/(p+p2), the interior vorticity €, and the squared Froude
number ¢. When A=0, the solution is just a circular drop-
let with purely rotating flow. For the simple case £2=0, the
solution does not depend on the parameter c. Secondly, as
the Atwood number A increases from zero, the droplet
boundary remains smooth until a critical value of A, de-
noted by A=A;,, is reached at which the boundary devel-
ops two corners. The sheet strength yis not differentiable
at these corners. Thirdly, larger values of |Q| result in larger
A=Ay,’s, and examination of the tangential velocity shows
that the two corners on the profiles at A=Ay, are stagna-
tion points. More specifically, it is found that the geomet-
ric character of the flow is related to the Atwood number
in the following way. For small A, there is a single stagna-
tion point in the exterior flow. At a particular value of A,
this stagnation point hits the droplet boundary. For larger
A values it splits into two stagnation points on the bound-
ary, which are at the droplet corners at A=A, (Fig. 1 of
[2]). The corner angle is shown to be 27/3 both numeri-
cally and analytically. Finally the dependence of the solu-
tion on the Froude number /¢ is very mild.

In this paper, we shall take into account.the-influ-
ence of the surface tension force and consider that ourte-
search in [2] is the special case where the s’urfaqé tension”
is zero. Since the dependence upon c is again "Y‘eiryiimi;ldf,‘j_
we simply show the results for =1 and concentrate on how: = -
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Fig. 1. The error curves for cases of different combinations of
|| and 1. Section III.A mentions how different sym-
bols correspond to different cases.

the relation among the three parameters A, Q and the sur-
face tension coefficient 7 affects the steady state solutions,
inluding the shape of the droplet and the characters of the
surrounding flow. Section 2 presents the formulation ob-
tained by both the Eulerian and Lagrangian formulations,
and performs perturbation analysis on the former and nu-
merical iteration on the latter. Results obtained by section
2, and how the solutions imply about the nature of the flow
are presented in section 3. There we show that solutions
by the two different methods agree with each other, which
verifies the validity of both approaches. Section 4 gives
the conclusion of the whole study.

IL. PROBLEM FORMULATION

We shall consider the steady state of a two-dimensional
inviscid, incompressible droplet of one fluid surrounded
by a second fluid under the influence of gravitational ac-
celeration, and the surface tension. Since this work is
closely related to the recent paper by the author ([2]), where
the steady state of such droplets without surface tensions
was studied, the readers might refer to [2] for a complete
understanding of the derivation of formulation.

A. Eulerian Formulation

Assume that there is constant vorticity in the interior
and that the droplet boundary is a vortex sheet. Let
subscripts 1 and 2 represent fluid properties inside and
outside the boundary, respectively, and the gravity accel-
eration g act in the negative y-direction. p;, P;, u; denote
the density, pressure, and velocity fields for i=1,2. The
constant values of inner vorticity and vortex sheet circula-
tion are denoted by —Q and I, respectively.

The governing equations in Eulerian coordinates are
the following:
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piu;- Vu+VP=gpy (x,y)e& oD 2.1
V cu=0
Pi+7k=P, (x,y)e D 2.2)
u;-n=0.

u;~>(U,0) dt e

In (2.1) and (2.2), D is the boundary of the droplet,
¥ is the unit vector in the positive y-direction, and n is the
unit normal vector on dD. The readers might consider that
the work in {2] is a special case with 7=0 in the Laplace's
boundary condition in (2.2).

A particular simple solution of this system with p;=p,
is the following:

ID={(x,y):x*+y*=1)

F A
790
-

u

(] (2.3)
Qr
P1=—8PIY+TP1V”§%2‘P1
r 1.,
Py=-gpyy-gaPryt g Pt Tk

4= 05

in which I'=—Qm+T; is the total circulation, r, 8 are
variables in the polar coordinates and 7, @ are unit vectors.
This simple solution will be used as a basic solution from
which to construct a perturbation expansion.

When the densities are different, the buoyancy force
F=—g(p;—p2)ny acted on the droplet is balanced by the
lift force F=-T'Up,¥ due to the Magnus effect, where U
is the uniform velocity in the x-direction of the far-field
flow, and the surface tension k. Let the perturbed solu-
tion to (2.1), (2.2) for p,#p, take the form (¥, Z are unit
vectors in the positive x and z directions):

dD={(r,0):r=R(6)}
u;=-5Q0+Vx(y,2)=Vx(¥2)

wy=— LB+ Uf +V x (y,2) = V x (¥,2)

2nr
P =-gpy+P
Py=-gpy+P,

In (2.4), W; is the stream function in fluid i ich
¥, o¥, E fuid
% - L), i=1,2. Itis givenby

u':(Ty_’ ox
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Yi=wi+3

= I
Y, =y, + Uy- Frlogr. (2.5)
Since dD is a streamline, we can set ¥,=¥,=0 on dD.

Also note that I, Q are constants, and the area and center
of the droplet is fixed as

l 2n 5 _
! L RY6)d0=r. 2.6)

2z

R(B)(cos 8, sin 8)df = (0,0) 2.7

The system (2.1), (2.2) is solved by doing expansions
around the special solution at p;=p,; i.e.

pr1=pate€

R=1+€R | +€R+...

Vit €W +€ Wint..., i=1,2 (2.8)
U=0+€U +€Up+...

B=By+€B+€By+...

The unknown coefficient functions of € in the above ex-
pansions are solved by further expanding them as Fourier
sums of sin(k8) and cos(k6). The resulting solution, up to
O(€) terms, is

B=gpXQ —(T/ 1))+ €Q* /8 - €*pyd;
R(6) = 1 + €%e,r¥cos 28
V(1,0 =~ Q/4 - €21 Qe 7005 26

W,(r,6) = ed,r 'sin 6 + €2 ﬁezr 2cos 26

U = €d1

2 '

ey =4p,(gm/ p )"/ {po(Q7 + F) + 127}

d,=gnl(Tp,). 2.9)
Thus the shape of the droplet dD={(x,y)(0)[0<6<27} is
obtained as

x(6)=R(0)cosB

2 2

~cos @+ fz—ezcos 8+ %ezcos 36 (2.10)

y(6)=R(6)cos8

2 2

=sin @+ ezsm 6+ ¢ ezsm (360). .11

B. Lagrangian Formulation

We shall work in the complex z=x+iy plane. The
boundary of the droplet dD is described by the complex
single-valued function Z(o)=X(0)+iY(cx), which encloses
a connected region D of fluid of constant vorticity—€2. The
parameterization is in the clockwise direction, OSo<27.
The velocity field on dD, ¢g(Z)=(u+iv)(Z), is as in [2]:

2r
7/—Qﬂgdd + Q‘Z(oc) +U.

4(@) = 5PV
2mi J Z(o)-2Z 4 @12)

The quantities with primes in the integral term in (2.12)
are functions of the integration variable o/. Yo} is the

2r
sheet strength with f Ko Yde'=T,. PV | denotes the
0

Cauchy principal-valued integration since the integration
in (2.12) is singular when o’=c.

The equation for {(«) is derived by using the Bernoulli
equations:

%| uw|*+ %+gy—‘P]Q=BI (xy)inside D  (2.13)

+gy-82 (x,y) outside 3D (2.14)

2| u, |? +
in which the constants B;’s have no relation with the ex-
pansion coefficients in (2.8). By taking equations (2.13)
and (2.14) on dD and eliminating the pressure terms by the
boundary condition P+7k=P, in (2.2), we obtain

VZ = Tk
Re 1] + A +4q+28) + A -1)=B.
Za'4lz,|’ p’ 2.15)

Here A=(p,—p,)/(p1+p2) is the Atwood number, and B is a
constant involving Q, ‘¥, p; and B;, i=1,2. The boundary
condition u;.n=0 yields

Im[z%] =0. (2.16)

Next we nondimensionalize the problem by setti

2.
z=17, y—qu Tq,U—LUQ Q/T, B—;B

L? L L’p,- 17

I'= ——I", A= —-—A, T= 7, and k=+k, where all
T gT? 72 L

variables with “~” are the dimensionless quantities. The

length scale L is chosen so that the area of the droplet is
fixed, as in the Eulerian formulation. Bang

2r

ydx =&
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The time scale T is then chosen so that the total circulation
is —1;i.e.

F=-1.. (2.18)

Defining ¢ = ?2, which equals the square of the

s

Froude number, and dropping
mensional system is

, the resulting non-di-

] 1 Y-QiZ'Z,12 Qi

gla) = =PV o Tdo + 25720+ U

2 [0 CE z 4 (2.19)

Re [7] + Ac( r 5 +§q) +2v) + th(cA— 1) =B

42,[° (2.20)

Im [Zia] = 2.21)

‘ i ydx=r (2.22)

0

2

X Wo =-1+Qn (2.23)

L_” (Re (Z(@0)), Im (Z(a)))dax = (0,0) (2.24)

C. Numerical Method

The nonlinear system (2.19)-(2.24) in Lagrangian
variables is numerically solved by the collocation method
as in [2], where only solutions symmetric about the imagi-
nary axis x=0 are sought.

The basic unperturbed solution to equations (2.19)-
(2.24) for A=0 is given by

Z(o)=sina+icoso

Ko =5+

q(e) ==~ —Z(a) 47rZ(a)

U=0

B=+L )(;—EH T (2.25)

The total circulation is fixed by setting I'=-1. The solution
to (2.19)-(2.24) is expressed in Fourier expansion around
the known solution in (2.25); i.e.

Z(o)=sino+icoso+X lsma+z]t Yicos(ja)
j=1

=02 _ 1
ne) = 5 2”+I;Z:l Ccos (ja).

(2.26)

Note that equation (2.19) serves as a definition of g,

and (2.23) and (2.24) are automatically satisfied by using
(2.26). There are 2N+1 unknowns {Y;, C;, j=1,2,...N-1;
XI,B U}. Evaluating (2.20), (2.21) at N points ak_l/a_(k—
—)7t for k=1,2,...,N, plus (2.22), results in a total of 2N+1
equatlons We use the Newton's iterative scheme to solve
this closed 2N+1 linear system, and the iteration stops when
the absolute value of the difference between two succes-
sive iterative solutions is less then 10”7. For specified
values of Q and 7, this problem is solved for various A for
a typical value of N=128. The consistency of the compu-
tation is checked by showing the numerical solutions
converge as the mesh size shrinks. Since Newton's itera-
tive scheme converges quadratically, it takes usually 3 to
4 iterations to reach the 1077 error bound. The continua-
tion method is used for the initial guess in the Newton it-
eration. Also note that the horizontal and vertical positions
are fixed by the property that Ixdo=[vdo=0.

III. RESULTS

A. Agreement between the Eulerian and Lagrangian
Formulations

To demonstrate the validity of both the analytic and
numerical results, we perform a comparison of the (ana-
lytical) Eulerian and (numerical) Lagrangian solutions.
Here we will cast the analytical solution (using € as a vari-
able) into Lagrangian form (using ¢ as a variable). The
transformation is derived in [2], so we simply quote the
final results:

X|=—Y[=€2€2

Y,=0(€%). (3.27)
To use (3.27), we must relate e=p1—p, and the At\good
number A. We nondimensionalize €as é = €/ p, = "2

2
= Tg—A7 Also note that the solution for the nondimensional
Eulerian formulation is the same except that g is replaced

gTh -1

by =¢~'. Thus by choosing c=1, the analytical solu-

tion in Section 2.1 is nondimensionalized by setting g=1.

Using these values, we compare the results of the
analytical and numerical solutions. In Table 1, there is a
comparison of the values X, and Y, for the analytical and
numerical solutions for Q=0 at distinct 7, while A varies in
a range of values. The “error” here is defined by
max(Janalytical X,-numerical X,|,lanalytical Y,-numerical
Y,]). The numerical results for Q=%0.5 and +1:0 show:.
better agreement with the analytical values for’ small A. .-

Table 2 presents the analytical and numencal solutlons for'

7=0.001 at different Q’s. We also fmd that the computa- -

- 10 -
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Table 1. Table 2.
numerical analytical numerical analytical
A X Y, X,=-Y, error A X Y, X,=Y, error
.0025 008690 -.008615 .008753 1.37774 0025 002713 -.002705 .002730 2.4674.;
Q=0.0 .0050 .034281 -.033145 .035189 2.0438.; Q=105 .0050 .010777 -.010662 .010975 3.1354,
=0.001 .0075 .075581 -.070270 .079574 9.3039; =0.001 .0075 .023973 -.023411 .024819 1.4080,
0100 131147 -.115942 142180 2.6238, 0100 .041004 -.040311 .044346 4.0357;
0125 199062 -.166015 223282 5.7268, 0125 .064594 -.060675 .069643 8.9675;
numerical analytical numerical analytical
A X, Y, X,=-Y, error A X, Y; X=-Y, error
0025 .006111 -.006074 .006149 7.4378; 0025 .000886 -.000886 .000891 5.25554
Q=0.0 .0050 .024147 -.023578 .024719 1.1405; Q=t1.0 .0050 .003535 -.003523 .003582 5.8243
=0.005 .0075 .053193 -.050506 .055897 5.3909, 7=0.001 .0075 .007921 -.007859 .008100 2.4045.,
0100 .091982 -.084234 .099875 1.5641., 0100 013999 -013806 .014472 6.6592,4
0125 139119 -.122128 .156846 3.4718,; 0125 .021716 -.021255 022727 1.4723;
numerical analytical numerical analytical
A X Y, X,=—Y, error A X, Y, X\=-Y, error
0025 .004459 -.004439 .004482 4.23745 0025 000417 -.000417 .000420 2.27884
Q=0.0 .0050 .017665 -.017358 .018017 6.5914, Q=115 .0050 .001668 -.001665 .001687 2.1880.s
=0.01 .0075 .039034 -037568 .040743 3.1758,; 7=0.001 .0075 .003745 -.003732 .003816 8.4038.
0100 067695 -.063403 .072799 9.3963; 0100 .006639 -.006595 .006818 2.22264
0125 102656 -.093099 .114325 2.1227, 0125 .010335 -.010229 .010706 4.7716,4
1 ©Omega - 0.0, tau=0 00t Table 3.
o8 Q=0 analyitical numerical
os A —ed, U(r=0.001) U(7=0.005) U(r=0.01)
] 0025 01574733 01574733 01574733 01574733
.l 0050 03157380 .03157380 .03157380 .03157380
_Oj 0100 .06346652 .06346652 .06346652 .06346652
A0‘4 0200 .12822827 -- 12822827 12822827
o6 .0400 .26179939 - 26179939 26179939
08 0800 .54636394 -- 54636394 54636394
A oozs cozs o1z |Q2|=0.5 analyitical numerical
Fig. 2. The stationary profiles of the droplet at Q=0.0, 7=0.001, A —€d, U(t=0.001) U(7=0.005) U(r=0.01)
at various 4. 0025 01574733 01574733 01574733 01574733
0050 .03157380 .03157380 .03157380 .03157380
tional results for larger T cases show better agreement with 0100 06346652 .06346652 06346652 06346652
the analytical values for small A. The error curves for 0200 12822827 12822827 .12822827 .12822827
7=0.001, 0.005. 0.010 for different Qs are shown in 0400 26179939 26179939 26179939 26179939
Figure 1, where we plot the curves using different sym- 0800 54636394 54636304 54636394 54636394

bols for different cases --

Q T Symbol Q T -Symbol
0.0  0.001 k- 0.5 0.001 -
0.005 —+- 0.005
0.010 -0- 0.010 -
1.0 0.001 X 1.5 0.001 @

It is found that computational error decreases-as. |2
increases. Table 3 compares the numerically. computed Us.

with the exact analytical result U=—ed; and. shows agree—,f :
ment to all significant digits. Similar results are observed‘

for larger [€2| computations.

- 11 =
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Fig. 3. The stationary profiles of the droplet at Q=0.0, 7=0.005,
at various A.

Omega=0.0, tau=0.01

-5 -4 -3 -2 -1 [ 1 2 3 4 5
Atw=.0175:.025:.1925

Fig. 4. The stationary profiles of the droplet at Q=0.0, 7=0.01,
at various A.
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Fig. 5. The stationary profiles of the droplet at Q=0.5, 7=0.001,
at various A.

B. Discussion

Here we present the stationary profiles of the droplet
and the corresponding velocity fields derived by our nu-
merical results. In Figures 2 to 4, we plot the shape of the
droplet at various A up to A, beyond which the iteration
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Fig. 6. The stationary profiles of the droplet at Q=1.0, 7=0.001,
at various A.
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Fig. 7. The stationary profiles of the droplet at Q=1.5, 7=0.001,
at various A.

Omega=0.0. tau=0.001
0.16 —r= ——— T ™

n.08¢+

o
3

tangential velocty

o
£

0.021-

_o.02 . H H " . L H
-4 -3 -2 -1 0 1 2 3 4
arctength

Fig. 8. The tangential velocity on the boundary vs. arclength
for Q=0.0, 7=0.001, at various A.

fails to converge, for Q=0 at 7=0.001, 0.005, and 0.01. In
Figure 5 to 7, we show the stationary shape of the droplet
for the case 7=0.001, Q=H0.5, 1, and £1.5. Note that the"_

scales on Figure 2 to 7 are not equal, thus indeed the sta--

tionary shapes at large A are very flat. Besides, both the
analytical and numerical results show that the stationary =




STEADY BUOYANT DROPLETS WITH CIRCULATION AND SURFACE TENSION

O wosd 1 Omegas05, st 001

e

i

[——

Fig. 9. The tangential velocity on the boundary vs. arclength
for Q=0.0, 7=0.01 (left), and Q=0.5, 7=0.001 (right), at
various A.

Omagaxt € tava 001 Omagaat 5, e 001

K K B B 3 18 S -0

] 0 1 5
vasn oo

Fig. 10. The tangential velocity on the boundary vs. arclength
for Q=1.0, 7=0.001 (left), and =1.5, 7=0.001 (right),
at various A.

shapes are independent of the sign of €.

To realize the characters of the flow field in each case,
we plot the corresponding tangential velocity field on the
droplet boundary. Since the normal velocity on the bound-
ary of a stationary droplet must be zero, a vanishing
tangential velocity indicates the existence of a stagnation
point on the boundary. Figure 8 to 10 show that for all
combinations of Q and 7 in our tests, as A increases, the
number of stagnation points changes from 0, to 1 and to 2.
By checking of the arclength of the location of stagnation
points and examining the velocity field of the surrounding
flow, we find that as A is small, there is a stagnation point
on the outside flow. As A increases, the stagnation point
on the outside flow field moves to the middle point of the
bottom of the droplet, then splits into to two, and the two
move apart to the two corners on the boundary. Figure 11
and 12 show the velocity fields of two selected cases--
Q=140.5, 7=0.005, and A=0.05. Both (2.8)-(2.11) and our
computational results show that different signs of Q
correspond to identical shapes of the droplet and the same
far-field velocity U, while the velocity fields inside the
droplet are in opposite directions.

These results present similar observations of
Pullin and Grimshaw [1] for nonlinear interfacial gravity
waves in a two-layer Boussinesq fluid, in which the upper

- 13 -

Omega=0.5, tau=0.005, Atw=0.05

Fig. 11. The velocity field for Q=0.5, 7=0.005, A=0.05.

Omega=-0.5, tau=0.005, A=0.05

—— =
~ e e
P

et
EEREEN

N T T T
—2 oI oLz ITIzTzTzIct

R R R R R R R R R R

Fig. 12. The velocity field for Q=-0.5, 7=0.005, A=0.05.

layer consists of a flow of constant vorticity and the lower
layer is irrotational. They found that the appearance of the
most extreme wave was consistent with that of one or more
stagnation points on the wave profile. The observation
that the droplet boundary is retained better for larger
values of the interior vorticity was also found by Moore,
Saffman, and Tanveer [3] in studying the Batchelor flows
in the cases of the Sadovskii vortex and the rotational
corner flow.

Finally, in contrast to the study in (2], where the
stationary shapes at A, all contain singular points, our
most limiting solutions obtained by numerical iteration
still have smooth boundarys. Since it is well known that
surface tension is a dispersive regularization of the
Kelvin-Helmholtz and Rayleigh-Taylor instability near
a stationary state (Drazin & Reid, 1981), and that numeri-
cal computation of interfacial flows with surface
tension suffers from stiffness due to computing higher.
derivatives, our intuitive Newton's iterative method
does require delicate modification to overcome such
difficulties. e e
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IV. CONCLUSIONS

We have set up the system describing a two-dimen-
sional vortical droplet in an inviscid, incompressible fluid
with circulation under the influence of gravity and surface
tension force, using both Eularian and Lagrangian formu-
lations. It is found that the non-dimensionalized system
contains four parameters-A, /¢, Tand €, yet the depen-
dence on /¢ is very mild.

A pertubation analysis was performed on the Eularian
system to derive a class of stationary flows for small A,
while numerical computations were done for several com-
binations of 7and Q up to A;;,, beyond which the numeri-
cal method ceased to converge. Only symmetric solutions
were sought. For small A, numerical solutions agree with
analytical solutions well. It is found that the droplet is less
deformed for larger |Q2|’s and 7’s and hence the correspond-
ing A;;, increases. In all cases we tested for given Q and T,
the most limiting solution contains two stagnation points
on the boundary. The location of the stagnation points
helped us to realize the surrounding flow field in each case.
We also found that the far-field velocity U and the station-
ary shape of the droplet are independent of the signs of Q,
while the velocity field inside the droplet is opposite with
different sgn(L2).

There are two important issues related to this work.
One is the stability analysis of the steady-state solutions
found here. In Appendix, we prove that the solutions are
linearly stable for small A for any given Tand Q, using the
exact solutions derived in Section 2.1. However, for larger
A, being short of analytical form of the solutions prevent
us from verifying their stability. One possible way of ana-
lyzing the stability for numerical results is to derive the
Hamiltonian for this system and check whether our nu-
merical answers give positive definite second variations.
Another way is to use the corresponding time-dependent
system and numerically investigate how these solutions
will develop as time evolves if a small disturbance is in-
troduced. This has been currently under study (S. Kao).
The other issue is the stiffness due to the surface tension
term. A refined numerical method must be suggested to
handle such over-regularization, but a practical remedy is
still an open problem.

APPENDIX: LINEAR STABILITY

The governing equations in Eulerian coordinates are
the following:

sz/lzg (Al)

[ 2 P
a%(gf‘//l)dx"'%’v Wl‘ +ﬁ:-+gy— yiQ2=B,
) (A2)
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V26,20 (A3)
) P
So+3|Vel vz rev=5 (A4)

Denote by 2D the boundary of the droplet. Equations
(A.1) and (A.2) are for (x,y) inside dD, while equations
(A.3) and (A.4}) are for (x,y) outside dD. The first term in

(A.2) can be replaced by — [ %(887 Y, )dy. The boundary
conditions are: .

i Sy - Lyy=i- Vi, (A5)
P=pP, (A.6)
V$,—(U,0) at oo. (A7)

Here 7 is the normal vector on dD. [2] shows that
steady state solutions exist when g and T" are specified (we
took g=1 and I'=—1) and Q is given for 0<Atw<Ay,,, where
Ay 18 the extreme value beyond which the collocation
method fails to converge. We shall denote by
w0, 02, PY, P) and R°(6) the corresponding steady state
stream function for inner flow, potential function for outer
flow, the pressure distribution, and the boundary dD={(7,6):
r=R(6)} for given fixed values of Q, p, and p;. Obvi-
ously, ¢, @), P{, P} and R(0) satisfy equations (A.1)-
(A.7). We perturb these functions by writing

iy +

0=0.+0,

P,=P+P, i=12

R(O)=Ry(6)+R"(6). (A.8)

Plugging (A.8) into equations (A.1)-(A.7), we obtain
the equations for the perturbation functions:

. a%(%w'l)dx + V- Vi, + % +gR'sin - y,Q
=B, (A.10)
Vig,=0 (A.11)
F@+V@)V%+;Hngn0 & MJ%

Again, equations (A.9), (A.10) are for (x \) mSIde 8D :

and (A.11), (A.12) for (x,y) outside (9D The boundaryl'fﬁ :
conditions are: :
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ﬁ-(a";w},—a";w}hﬁ-w; (A.13)
P =P, (A.14)
Ve, — (0,0) at o (A.15)

Taking (A.10), (A.12) to D and cancel the pressure
term by (A.14), we derive:

P20, +p, V85 V9, + (py - p)gR'sin 0

—plf ;%(%wl)dx—pl V! Vi +p Q=5
(A.16)

where B = p,B, - p,B,.

Assume that ;= (Pe®®+  and
¢, = §y(r)eik+ e where i =v— 1, tis the time variable, k
is an integer and ¢ could be a complex number. (A.9),
(A.11) and (A.15) imply that

i, (r) = Arl¥l (A.17)

@y(r) = Brlk|, (A.18)
where A and B are constants. We shall write k instead of
k], assuming that k is nonnegative. We can use (A.13) to
find the relation between A and B. Let (X,Y)(0) denote a
boundary point, i.e. dD={(X,Y)(8): X*+Y*)(6)= R(6)*, 0<6<
27, then

=G, - 9%

0 0
= (%sin 8+ R%os 6, — %cos 6 +R"sin 6).(A.19)
By (A.17)-(A.19), (A.13) implies that A=iB. Now we
shall plug y, = iBrte!*8+<) and ¢, = Br¥*e/k?+<) into

(A.16), which holds on r=R%(8).
In [2], we have shown that R(8)=1+€e,cos(26), where

2
e=p,—p, and e, = 4g2m? | {(Q% + %)rng} is a constant.

Thus we can expand each term in (A.16) about r=1. For
example,

¢, _ 00, 2

o N =5 o) + €%e,cos (26)
RENEIN

or' ar (r=1,0

We collect the coefficients of each power of €, and
find that the O(1) equation is the same as (A.16) except
that the term containing the gravity is dropped, and it is
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now evaluated at =1. The equation becomes:
iz; L iz; P27 _ Q § 27
poBeic + pzzn_kBe i + pBcie” - p, 5 kBie

+p,BieQ =8B (A.20)

Here z=kB+ct. (A.20) implies that B = 0 and c= (0, K/
2-1)—p,Tk/(2m)/(p;+p>) is a real number. Thus our per-
turbation functions all stay the same magnitude as time t
proceeds. This proves the linear stability of the steady state
solution at small Atwood number.
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