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ABSTRACT

The power system stabilizer (PSS) is considered to be an effective facility for improving
the dynamic stability. In this paper, a nonlinear optimization based on Goh's formulation is
used to determine the PSS parameters. The real part of dominant eigenvalue of the system is
minimized by tuning the PSS parameters through the formulation incorporated with the genetic
algorithms (GA). Numerical results for a one-machine system show that the proposed method
can effectively improve the power system dynamic stability.
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L Introduction

Due to a rapid growth in the electric power demand
and improper network planning, e.g., longitudinal
structure, the damping in power systems becomes
deteriorated. Several unacceptable dynamic stability
problems, e.g., low frequency oscillation, render more
attention to electric power utilities [1-4]. The low-
frequency oscillation is found to be due to the lack of
mechanical-mode damping [1-8]. The power system
stabilizers (PSS) are well known as a supplementary
excitation control for enhancing the dynamic stability
of a power system [4-8].

There are two tasks which should be achieved for
the installation of the power system stabilizers: location
selection and parameter tuning [6-8]. The methods based
on the right and left eigenvectors can accurately locate
PSS [7,8]. On the other hand, the methods for tuning
the PSS parameters are diversified and can be summa-
rized as follows:

(1) An optimal control theory was used for adjust-
ing the parameters in [9,10]; however, proper weight-
ing matrices for the state/control variables and iterative
solutions for solving the Riccati equation are required.
In [11,12], the weighting matrix could be calculated;
however, only a part of eigenvalues was considered for
movement to the left side of the complex plane by the
pole assignment.

(2) The system order reduction was used to tune the
PSS parameters in [13,14]; however, the order reduc-
tion sometimes leads to inaccurate solutions [14].

(3) Pole assignment methods were proposed in [15,
16]. However, the drawbacks of this method are likely
to result in parameters outside their reasonable ranges;
furthermore, the methods for assigning poles are
heuristic.

(4) To avoid the above disadvantages, the problem
was formulated via an optimization formulation in [17,
18]: minimize the largest real part of eigenvalues and
restrict the PSS parameters by inequality constraints.
Linear programming incorporating with sensitivity
analysis were used to solve the problem in [17]. Owing
to the usage of a quadratic model in the objective
function, it is required more than two solution processes
to obtain an optimal solution. As for the method in [18],
because the objective function was evaluated with the
sensitivities, a suboptimal/feasible solution could be
obtained.

(5) Neural adaptive PSS and rule-based fuzzy PSS
were also proposed in [19,20,21]. However, the PSS
technology based on the artificial intelligence is still lim-
ited for practical use. =

On the basis of the above discussions, a novel ap—,

proach based on Goh's method [22] for formulatmg the'. %
problem as a nonlinear optimization problem is proposed

in this paper. The real part of the dommant elgenvaluekﬁ .
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is minimized using the genetic algorithms (GA) [23]
without incorporating the sensitivities. All parameters
are given in a reasonable range formulated by the in-
equality constraints; the equality constraints are derived
from Goh's formulation [22].

A fundamental control concept is provided in Sec.
2. The proposed algorithm for tuning the PSS param-
eters is presented in Sec. 3. The test result based on a
one-machine system is discussed in Sec. 4.

I1. Methodology

Goh proposed-an optimization formulation to deal
with the minimization of the eigenvalue with the larg-
est real part of a system matrix in [22]. The proposed
method in this paper is based on Goh's method for tun-
ing the parameters of the §ystem matrix to stabilize the
system. The adjustable parameters are due to the PSS.

A. Problem Description

Let N(t) be an nxn matrix of continuously differenti-
alable functions; moreover, let 4,[(N(r)] be an eigenvalue
for N(t) for Ve D,i=1, ..., n. The eigenvalue with the
largest real part is defined as the dominant eigenvalue.
The optimization problem here is to minimize the real
part of the dominant eigenvalue subject to £ € D. This
problem can be formulated as follows:

min max ReA, [N(t)] (D)

teD 1<i<n

B. Goh's Formulation

Let the eigenvalue of N(t) be

A=pi+to,i=1,..,n (2)
where A, i =1, ..., n, is the solution of the following
characteristic equation for the system N(t):

P(A; t) = det[AI-N(t)] 3-D
or

qp, 0)= H [A-(pi+joDl, e C (3-2)

where H [A - (p; + joy] is a real function of A. Note
i=1

that o; ' may be zero. For a pair of conjugate eigenvalues

or any two real eigenvalues,

[A—(pi +joD] [A~ (pin—jo))]
= A= Mpy + pi2) + (Pupi + 67) + joilpia — Pir)
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and

i(pp—pi=01i=1,..,n

where

o= (n—-1)/2 n is an odd number
o2 n is an even number
On the other hand, the function q can be expressed
as:

a0k; . a)=£[lm—<pi+jaﬂ

W=@- )2

A-pp) l’[l (A2 - Moy +pp) + (o + 0D nisodd  @-1)
L

n=nn
.21 A%~ i1 +pp) + (upip + 0D niseven  (4-2)
1=

andhyj=oi(ppp—pi)=0,i=1,...0 5)

where

©os P11> P12 Po1> Pozoeess Prvts Pr)

nis odd

©115 P12 P21 P2zs -+ Pt Pr2)
niseven

o= (619 bAad] Gn)

Eg. (5) indicates that 6; =0 or p, = . If 6;=0(@
# 0), the corresponding eigenvalue is a real number for
Eqgs. (4-1) and (4-2). Therefore, Eq. (4-1) means that
there is at least one real eigenvalue, pg, and there are at
most n real eigenvalues. For the same reason, Eq. (4-2)
means that there is at least zero real eigenvalue, pg, and
there are at most n real eigenvalues. Note that P(4; t) —
q(4; p, 0) is a polynomial of order n. If P(4; t) — q(4; p,
o) is zero for (n + 1) different solutions, it is always
zero for VA € C. Therefore, Eq. (3) is equivalent to

=P(A;; ©) — q(Ai; p, ©)
=det [AI-N®]-q(4; p, 0) =0
i=1,..,n+1 (6)

where q is defined in Eq. (4) and all A;,i=1, ...,
different. B
On the basis of the above discussion, Eq. (1).can'be
reformulated as a nonlinear programming prOblem“With £
equality and inequality constraints. Suppose ,that n 1sg]
odd. The problem becomes as follows e

n+1, are
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min y : )
s.t.

PosY (®)

o<y k=121i=12,.n )]

gi=P; ) ~ql;p,0)=0i=1..n+1 (10
hi=0pp—pi)=0 i=12,..n' (1)
Ve D (12)

where t is the independent variable and po, ik, O, Y are
the dependent variables.

The solution of Egs. (7~12) provides all values of
eigenvalues and parameters (i.e., t) for the system ma-
trix N(t).

C. Genetic Algorithms

There are many methods to solve Eqs. (7~12). Since
this problem is very nonlinear, any traditional optimi-
zation method will approach a local solution. This pa-
per employs an optimization software package based
on GA [23] to obtain the global optimum.

The basis of applying GA to solve the optimization
problem is coding all the searching parameters to dis-
crete or binary strings named genes. Then according to
the solved problem, a fitness (objective) function is
defined. For the better fitness function values, the cor-
responding individuals will be chosen to the mating pool
for the process of reproduction.  With the crossover and
mutation operations, a new generation of GA is achieved.
The GA is achieved by repeating each of the above pro-
cesses to produce the fittest individuals. In this paper,

Aw Ad
2nf)/s -

O w4
AEep 14sT,

Fig. 1. Transfer function block diagram for the one-machine
" system.
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all unknowns are coded with 16 bits individually and
the fitness function is —.

The population size for a new generation, chromo-
some length, crossover rate and mutation rate control
the convergence speed and optimality for GA.
Generally, a large population size can result in high ac-
curacy but increase the CPU time to converge. In this
paper, “one-point crossover” and “one-bit mutation” are
implemented. The population size, crossover rate and
mutation rate are 250, 0.9 and 0.01, respectively, in this
paper. With an elitist strategy, the individuals with the
better fitness are selected to reproduce the new
generations.

III. System Model

The synchronous machine model that is most widely
used in the study of the dynamic stability problem is the
Heffron-Phillips-deMello-Concordia model [5] as
shown in Figure 1. There are two major loops in Figure
1: the mechanical loop on top and the electrical loop at
the bottom.

In the mechanical loop, the incremental torque (AT,
— AT,) is considered as the input; AT, denotes the in-
cremental mechanical torque; AT, represents the incre-
mental electric torque; the torque angle AS expresses
the output. In these blocks, M, D and 27f are the inertia
constant, the mechanical damping coefficient, and the
synchronous speed, respectively.

The electrical loop in Figure 1 includes a supple-
mentary control u minus the incremental terminal volt-
age as the input and the incremental internal voltage
Aey' as the output. It has two transfer function blocks
from right to left. The first block represents an exciter
and voltage regulator system of the fast-response type
with a time constant T, and an overall gain K,. The
second block represents the transfer function of the field
circuit affected by the armature reaction, with an effec-
tive time constant Ty,'Ks and a gain K5. Finally, Av;
consists of two components, KsAd due to the torque
angle variation AS and KeAe,' due to the internal volt-
age variation Aey'. Here Av; means (v, - Vrgp)- A nega-
tive sign is given to v, because of the negative feedback.
vRer 18 the reference voltage.

The transfer function block can be represented by
single-input-single-output power system dynamic equa-
tions as follows:

x=Ax+bu e (13)

y=c'x

o

where x and y are the state variable and the output vari-
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able vector, respectively. The symbol u expresses the
input. The symbols A, b and ¢ denote the system coef-
ficient matrix, input coefficient vector and the system
output coefficient, respectively. The transfer function
G(s) from u to y is as follows:

G(s) =c"(sI- A)"'b (15)

The open loop transfer function is G(s) while the
closed loop transfer function is G(s)(1 — G(s)H(s))™" with
the PSS of a transfer function H(s). The eigenvalues of
the power system including the PSS are the poles of the
closed-loop transfer function and satisfy the following
characteristic equation:

1-G(s)H(s) =0 | (16)
IV. Simulation

Consider a one-machine-infinite-bus system. All
data are given in per unit of value except M and time
constants which are in seconds.

Generator: M=9.26, T'4,=7.76,D =0
X4=0.973,X4=0.19,X,=0.55

Excitation: K, = 50, T, = 0.05

Line: R = 0.034, X = 0.997

Load: G=0.249, B =0.262

Initial states P, = 1.0, Qq, =0.015, V,, = 1.05

The initial d- and g-axis current and voltage com-
ponents and torque angle for the initial steady states are
as follows:

Vo = 0.4659, Vo = 0.941, iy, = 0.4354
igo = 0.8471, &g, = 1.024

The K constants are

K, = 0.5441, K, = 1.2067, K5 = 0.6584
K, = 0.6981, K5 = —0.0955, K¢ = 0.8159

The system state variable vector is [A®, A, Ae;], AEFD]T ,
where 8, @, A¢, , and AEgp, represent the torque angle,
angle frequency, internal voltage of the armature, and
field voltage as seen from the armature, respectively.
For the above data, the system eigenvalues are 0.295+
J4.96 and -10.3931j3.283. Because there are unstable
roots, it is necessary to include PSS for improving the
unstable states. The transfer function h(s) for the PSS
is chosen as

1S +12

H(s) = (k=20) (17)

where 70<t,, 1,<700. And the power system open loop
transfer function

-16.793s
s*+20.19573s3 + 131.2114s2 + 442.95s +2932.086

G(s)=

Therefore, the original characteristic equation is as
follows:

5+20.195735'+131.21145*+442.955+2932.086=0

When the PSS is included, the new characteristic
equation is as follows:

1 -G(s)H(s) =0
i.e.

P(s; t)=det[sI-N(1)]=s’+40.1965*+535.126s
+(3067.178+16.793t,)s*+(11791.086
+16.7931,)s+58641.72 =0 (18)

where t=[t;, t;]. Because n=5,
n=(- )2 ,
qs;p,0)=6-pp) i; [8% = s(0y) + Pi) + (PP + O]
= (5= polls® —s(py1 + P12 + (Py1P12 + O]
X [8% = 5(0y; + P2) + (0212 + O] (19)
and g=P(s; t) — q(s; p, 6)=0 (20)
The problem becomes as follows:
Minimize ¥

s.t.

Po=Y

PuUSY

PLSY

Pusy

Py

70<t,<700
70<t,<700
hi=01(p12—p11)=0
hy=0,(p20—021)=0

and Eq. (20) (see Appendix). :
In this case, the population size, string length cross—:»

over rate, mutation rate are set to be 550, 16 bits, 0.95, .

0.01, respectively, in a GA software package The optl-
mum values for all variables are follows S
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Po= -24974, P11 =P1= -3.805,

P21 =P = -3.806, o1 = 6.048, O = 5.613,

t,=91.78 , t, = 536

Figures 2 and 3 illustrate the state responses for A
and A#, respectively. It can be found that the unstable
system responses can be enhanced with the PSS.

V. Conclusion

In this paper, a new method based on Goh's optimi-
zation formulation is proposed for the determination of
PSS parameters. The Goh's formulation leads to a set
of equality and inequality constraints. The parameters
of the PSS can be restricted with inequality constraints.
The dominant eigenvalue can be minimized using GA.
The eigenvalues and all parameters can be obtained with-
out pole assignment. The test results show that the state
response can be effectively improved with the proposed
method.

Appendix

This Appendix provides the relation between P(s;
t) and q(s; p, ©). Obviously, P(s; t) and q(s; p, ©) are in
terms of unknown t and p, G, respectively, where s is an
unused parameter. More specifically, in Section 4:

Ao State response A & State response

20 2000
10 A 1000
AN AN
0P A Nf 0 AN
-1 : v V \V} -1000 v v \
20 5 10 2000, 5 10
Time(sec) Time(sec)

Fig. 2. Awsand A become unstable without PSS.

Aw State response

) : . 100 Ad S‘catef response
: 50
ol A\l \
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-1 i ~50 i

0 5 10 0 5 10
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- Fig. 3. Awsand Ad become stable with PSS.
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P(s; t) = det[sI-N(1)] = s* + 40.196s* + 535.1265°
+(3067.178 + 16.793t;)s” + (11791.086

+ 16.793ty)s + 58641.72 =0 (A-1)
)
q(s; p, 0)=(s - py) i; [s% = s(0;; + pi) + (PP + 02

= —pols® =8 +p 1)+ QP+ oD

x [s% - 802 + P2) + (02102 + d%)] (A-2)
From Egq. (20),
g=P@;0)—q(s; p,0)=0 (A-3)

Comparing the coefficients between Eqgs. (A-1) and (A-
2), one can obtain the following equality constraints:

Po+ P11+ P12+ P21 + P22 =-40.196 (A-4)
PoP11+ P12+ P2+ P2+ (011 + P12 021 + P2)
+ PP T OF + PPy + 03 =535.126 (A-5)

Pol(P 11+ P12 (P21 + Po) + P11P 12+ OF + Pa1Pgy + T3]

+ (P11 + P1)P21P20 + 0D+ (Poy + P)P11P1 + Q%)

=-3067.178 - 16.793¢, (A-6)

PoP11+ P1D)P21P2 + T + po(P2) + P2) (1112 + O

+ (011012 + D110, + 03)=11791.086 + 16.793¢,
(A-7)

PoP11P 12+ TP + 0%) =-58641.72 (A-8)
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