Chung Yuan Journal
Vol. 28, No. 3, 2000, pp. 15-22

A Multicomponent Flow Calculation Using
MUSCL Type Central Scheme

TieEN-YUu Sun anDp CeEN-Tzu Hsu

Department of Mathematics
Chung Yuan Christian University
Chung-Li, 32023, Taiwan, R.O.C.

(Received: May 12, 2000; Accepted: September 6, 2000)

ABSTRACT

In this paper, we demonstrate that we can exploit the Riemann-solver-free feature of MUSCL type
central scheme and apply it to single-component and multicomponent one-dimensional, unsteady com-
pressible Euler equations with stiffened gas equation of state. Under the present framework, the tradi-
tional difficulty of constructing a proper Riemann solver according to the equation of state considered in

multicomponent flow calculation is now eliminated.
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1. Introduction

In the past two decades, advances on high resolution
methods for solving hyperbolic conservation laws
numerically has been very remarkable. The resolution of
single-component compressible Euler equations with the
polytropic gas equation of state is now a standard topic in
a large number of textbooks on computational fluid
dynamics. However generalization and application of
existing results to single-component compressible
Euler equations and to multicomponent compressible Euler
equations with more general equation of states are proved
to be much more difficult. See [1, 5,6, 9, 10, 11, ~1\4] for
recent development in this direction. One major difficulty
is the construction of a proper Riemann solver according
to the equation of state considered may be very complicated.
Furthermore, it is now well known that, in the computa-
tion of multicomponent flows, special care has to be taken
on updating the pressure field. Typically, spurious
oscillations in pressure appear near interfaces separating
the two gases once the time evolution is started and keep
growing afterwards. See references listed above for more
details.

Recently, progress has been made on the development
of Riemann-solver-free central schemes for hyperbolic
conservation laws. See [4, 8, 15]. Since characteristic
decomposition is no longer performed at each cell interface,
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central schemes execute significantly faster than traditional
Riemann-solver-based methods. Their Riemann-solver-
free feature also give them great flexibility so that they are
good solvers to be considered in a wide range of
applications. However central schemes are usually more
diffusive as compared to most Riemann-solver-based
methods, especially on the resolution of contact
discontinuities. See [4, 8, 12, 14] for numerical tests on
central schemes.

The purpose of this paper is to exploit the Riemann-
solver-free feature of Toro's MUSCL type central scheme
in solving one-dimensional compressible Euler equations
of one or more components. In §2, we demonstrate
that MUSCL type central scheme can be used to resolve
single-component flows of polytropic gases and stiffened
gases by making minor changes in the program codes.
As a preliminary step in developing a multicoponent
alogrithm based on MUSCL type central scheme, a central
scheme for solving variable coefficient advection
equation is proposed and tested in §3. Then, in §4,
an algorithm for resolving multicomponent flows of
stiffened gases is given based on the volume-fraction
model discussed in great details by Shyue in [10].
Numerical tests given in §4 show that the method of
this paper provides an easy to use solver in-additional to
those Riemann-solver-based methods developed by Saurel, .
Abgrali and Shyue in [9, 10]. S e
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II. One-dimensional MUSCL type central
schemes

A. Numerical schemes

To make the paper self-contained, we now give a brief
review of the one-dimensional MUSCL type central
scheme. Given mesh sizes Ax and time step Az, we will
use the notations x; and #, to represent the grid jAx and the
time nAz. The cell average of U(x, t) over the cell [x, 5,
Xj,172] at time ¢, is denoted as U;.

Consider the initial value problem of the one-dimen-
sional hyperbolic conservation law

Ui+ FU), =0
Ulx, 0) = Up(x). (2.1)

The MUSCL type central scheme has the same frame-
work as the MUSCL-Hancock scheme treated in the most
textbooks, such as [13]. First, as a higher resolution
extension to the Godunov method, we replace the piece-
wise constant function

U'x)y=U7, X€ (Xj12: Xjr1p0)

with the piecewise linear function

n n YT
U(x)=Uj(x)=Uj+ Y Aj,

XE (X172, Xjr112)- (2.2)
Here A, is a slope vector, such as

|
Aj=§ (Uj+1 *UJ_I).
Second, at the boundaries of the cell [x;.1/2, xj4172], the

boundary extrapolated values U are set equal to

H 1
U U ~5 A
+_ g 1
vi=vs+la, 23)

Then Uji are evolved by half a time step with
S+ AL + -
07 =U; -5 FUH-FW)),
- _ A + -
Uj—Uj—E(F(U/.)—F(Uj)). 2.4)

The numerical flux F},, of Riemann-solver based
MUSCL-Hancock scheme is defined as

Fiiin=F(U;10(0) (2.5)
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where Uj, 0(x/7) is the solution "of the Riemann problem of
(2.1) with Riemann data (U U;, ). InMUSCL type cen-
tral scheme, to avoid the use of Riemann solver, the nu-
merical flux is set equal to

FS  n=F"U;. U, (2.6)
= %(FRI ;. U;,)
+FHU U7, D) (2.7)

where F* and F** are the Richtmyer and Lax-Friedrichs
fluxes respectively. We have

FA(US, UY = F(U™),
M= Jwt+uh
+2ALEWU - FUT), 2.8)
FH Wt ut =1kt + Fut)

L R
+4 AL (U -U"%).

The flux function F° is the numerical flux of the
first order FORCE scheme. Then the MUSCL type cen-
tral scheme gives

Uj"lH:U]r‘l ( j+li2 FjC—I/Z) (2.9)

To suppress spurious oscillations in the numerical
solutions, we may replace the slope vector A; in (2.2) with
a limited slope vector A ;- See [12, 13] for possible choices
of limited slope vectors A;. In the numerical tests that
follow, we will use the UNO limited slope vector, which
has the form

A;=MMQ,_,u+ %MM(A%{/ A%,
Ay - %MM(AZMI'AZMJ‘ ) (2.10)
where

Ap1plt = Uy -t
-
A U= l/tj+1-2bt]'+l/tj_1,

MM(Ml, Uz, )
min{u;}, if u;>0 forall j,
= maxj{uj}, if uj<0 forall j,
0, otherwise.

B. Numerical tests
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Example 2.1 We begin by considering the one-dimensonal,
unsteady Euler equations

p pu
aat(pu +Ba_ pu’+p |=0 (2.11)
u(E +p)
with the polytropic gas equation of state
£ 2.12)

pe=24

In (2.11), p, u and p are the density, velocity and pres-
sure respectively. E = pu’/2 + pe is the total energy where
e is the internal energy per unit mass. The coefficient y is
the usual ratio of specific heats. The first test problem is
the modified Sod's problem taken from [13], with initial
data

(p.u,p)=(1,0,1), x<0.4,
(p, u, p) =(0.125,0, 0.1), x>0.4.

In (2.12), ¥ is set equal to 1.4. The computational
domain [0, 1] is divided into 100 cells with nonreflecting
boundary conditions applied at both end. The time step Az
is chosen by

Ar=C, s%f‘ (2.13)

where C,q is the CFL number. In (2.13),

_ n
Smax - m]ax (‘ Uj + a;‘x)v

where a is the sound speed; a* = p/p. We set Coz=0.8.
At £ = 0.2, the resulting profiles of density, velocity and
pressure are displayed in Figure 1 below.

Figure 1 indicates that the result generated by MUSCL
type central scheme, as compared to numerical results in
[13] on the present test problem generated by various
methods, is significantly better than first order ones. How-
ever the MUSCL type central scheme is still inferior to
most high resolution Riemann-solver-based methods used
nowadays and is more diffusive near contact
discontinuities, as can be seen in Figure 1 near x = 0.5.
One major advantage of using central schemes is that the
process of characteristic decomposition is no longer per-
formed at each cell interface. Thus the matter of design-
ing appropriate Riemann solvers for each fluid in the two
phase flow computation can be avoided totally. This flex-
ibility of central schemes can be found in the following

example.

Example 2.2 We now consider the Euler equations with
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Fig. 1 Numerical solutions of p, u and p at t = 0,2 are marked
by + signs. The solid line in each figure is the fine grld
solution generated by the same method and CFL
numbers, and 1000 mesh points.
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the stiffened gas equation of state

prvp.,
y=1"
As before, 7 is the usual ratio of specific heats. p.,, is
a prescribed pressure-like constant. The material param-
eters ¥, p.. from laboratory experiments to describe mate-
rial property of interests. See [3, 7] in this aspect. Follow-
ing Test 1 in [14], we take y=7.15 and p.. = 300.0 MPa
and

pe = (2.14)

(p, u, p)r = (1100, 500, 5000),

(p, u, p)r = (1000, 0, 0.1), (2.15)
separated along x = 0.5. The units in (2.15) for p, u, and
p are kgm”, ms” and MPa. In the numerical test below,
the computational domain is {0, 1] and set Ax = 0.01. At
both ends of the computational domain, the nonreflecting
boundary conditions are employed. Time step is deter-
mined same as in Example 2.1, except that the sound speed
ais now givenby @’ = y(p + p..)/p. We set Cr=0.8. At
t = 0.00075, the resulting profiles of p, u, p and e are dis-
played below in Figure 2.

It is clear that the result in Figure 2 given by the
MUSCL type central scheme is significantly better than
those given in [14], using the Godunov method and

1300 1000

F 800

1200 L '
600 f '

3
400 IL
(
1050 20

10000 w Q

02 04 06 08 1 0 02 04 06 08 1

1250

21150

1100

{‘/77 £ e e e
PR

S
] 0.2 04 06 038 1 0 0.2 04 086 08 1
X X

Fig.2 Numerical solutions of p (upper left), u (upper right), p
(lower left) and e (lower right) at z = 0.00075 are marked
by + signs. The solid line in each figure is the fine grid
solution generated by the same method and CFL
numbers, and 1000 mesh points.
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Riemann solvers proposed by Toro. Although the resolu-
tion of nonlinear waves given here is not as sharp as what
Toro did using his weighted average flux (WAF) method
and Riemann solvers, the MUSCL type central scheme is
flexible and easy to program as compared to Toro's
Riemann-solver based methods. The only difference of
the computer programs of the two examples presented here
is the pressure is determined differently. Furthermore, test
results on speed of execution given in [12] shows that, as
compared to traditional Riemann-solver-based methods,
the MUSCL type central scheme is significantly faster. In
the next section, we will further exploit the flexibility of
MUSCL type central scheme and apply it in multicompo-
nent flow computations.

HI. Central Schemes for Advection Equations.
In this section, we give a central scheme for solving
variable coefficient advection equations. Numerical test
on the performance of the resulting central scheme is also
given.
A. Numerical schemes
Consider the advection equation
U+ AU, = 0. 3.1
The first order central scheme that we begin with is

chosen to be the arithmetric average of the Lax-Friedrichs
scheme

U= 1(U" P A AU+ U ) (B
and the Lax-Wendroff scheme
U;I+I=U;'—E AU+ U )
"‘% Aj12U7 = U))
AU} - ) (33
Take
= JAWUT+ UG+ £EUT - U7, ), (3.4
Fi= %A UG+ UD+E At(Un -Up, (3.5)
Uﬁ1/2= %(Un + U"+1) 2Ax _]+1/2(Uj+l ‘U )

Here, in (3.6), we set




A Multicomponent Flow Calculation Using MUSCL Type Central Scheme

Aj+1/2=%(Aj+Aj+1)

Then (3.2) and (3.3) can rewritten as

Uyt =Uy - ALET - F). 3.7)

and

U;1+1_Un_

LLAWUE ,-UR (3.8)

respectively. Above the first order solver for (3.1) is re-
ferred to as the primitive FORCE scheme and can be imple-
mented by the following steps.

Step 1. In each cell [xj.152, X412}, set
n+l, _yyn
U; =y ; 3.9

Step 2. At each interface x = xj,1, set

n+1 n+l
U;":=U;

(F++A UX, 0 (3.10)

n+1

Ui U"+1+Ax( 1+1+AJ+1UR+1/2) @3.11)

Now we proceed as is usually done in type schemes to
sharpen the resolution of the primitive FORCE scheme.
In each cell [x;.1p, Xj112], boundary extrapolated values U Ji
are evolved by half a time step by

=+ +
U;=U;

N
j —-54,U;-Up)

___ _ At _
U;=U; - 3A,u;-Up,

; (3.12)

Finally, we replace cell averages U7, U}l 41 With U

and U; j+110(3.4), (3.6) and cell averages U} _;, U7 w1th

U/ 1, U; in(3.5). We call the resulting hlgh resolutlon
method as the high resolution primitive FORCE scheme
for advection equation (3.1). As a direct consequence of
the Lax-Friedrichs scheme (3.2) and the Lax-Wendroff
scheme (3.3), in scalar equations, we can choose CFL num-
ber

Ccﬂ=mxax|A(x)|% (3.13)
upto 1.
B. Numerical Test

Example 3.1 We now apply the primitive FORCE scheme
and its high resolution extension to solve the advection
equation

1. _
u,+xu,=0

I (3.14)
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along with the initial condition

1, x<0
”(x’o):{o x>0

The computational domain is chosen to be [0, 2], with
nonreflecting boundary conditions applied at both end. We
use 100 mesh points and CFL number C.; = .8. The nu-
merical solution at = 1.5 is plotted in Figure 3.

Clearly, in Figure 3, the result of the high resolution
primitive FORCE scheme improve the first order one
significantly. No spurious oscillation is observed in the
computational domain. In the following section, the high
resolution primitive FORCE scheme will be applied to
solve the governing equation for the volume-fraction in
two phase flow computation, which appear in the form of

os5F

0sf d

Fig. 3 Numerical solution of (3.14) at r = 1.5 generated by the
first order FORCE scheme is marked by x signs and the
one generated by high resolution primitive FORCES
scheme is marked by diamonds. The solid line.in eachk
graph denotes the fine grid solution using the same g
method and CFL numbers, with 1000 mesh pomts o
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advection equation (3.1) with A(x) equal to the velocity
field u of the flow.

IV. One-dimensional multicomponent flows
A. Numerical scheme

In this section, we develop multicomponent flow
algorithm based on MUSCL type central scheme to simu-
late the motion of a mixture of fluid governed by the
Euler equations (2.11) and the stiffened gas equation of
state (2.14). For simplicity, we will assume that there are
only two kinds of fluid in the mixture, each has its only set
of material parameters ¥ and p, i = 1,2. We adopt the
volume-fraction model given in [10] to describe the mo-
tion of the mixture of fluids. The governing equations are

%p + a%C(pu) =0,

%(pu) + %(pu2 +p)=0,

Qe+ LuE+py=o,

97,49
8tZ+u8 Z =0. 4.1)

Here the variable Z is the volume-fraction function of
fluid 1. To find the pressure p of the mixture in a consis-
tent manner, we follow Shyue's approach and set

1 7 1-Z

=11 e

[z a-2yp®
A1 ¥ -1

7 1-Z -

The resulting y and p.. of (4.2) are then substitute into
(2.14) to give pressure p. See [10] fot the details of the
volume-fraction model for multicomponent flows of stift-
ened gases.

Our algorithm for solving (4.1) consists of applying
the MUSCL type central scheme in §2 and the high reso-
lution primitive FORCE scheme in §3 to solve the Euler
equations and the advection equations for volume-fraction
function Z. Att = t,, piecewise linear approximations to
p. pu, E and Z are constructed and are then used to find
their corresponding boundary extrapolated values. Then
the boundary extrapolated values of Z are used to deter-
mined the boundary extrapolated values for the material
parameters Y and p.. and also the boundary extrapolated
values for pressure. With the boundary extrapolated val-

oo
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ues of pressure available, we can now evolve the bound-
ary extrapolated values of the conserved variables U = (p,
pu, E)" by half a time step to U using (2.4) and flux func-
tion F(U) = (pu, pu’+p, u(E+p))T Here T refers to trans-
poses of matrices. The boundary extrapolated values of Z
are evolved by half a time step to Z usmg (3.12). Let
Zj +1/2 be the outcome of subsmutmg Z and Z, ;41 IntO
(3.6). The value Z] +1/2 1s then substltuted into (4 2)t0
determine the correct material parameters yand p.. to be
used in the evaluation of the numerical flux function of
MUSCL type central scheme for Euler equations. What
remains is to apply the high resolution primitive FORCE
scheme to advance Z and the MUSCL type central scheme
to update the conserved variables to time f,,;. The effec-
tiveness of the method described here will be tested in what
follows.

B. Numerical tests

In the tests below, the time step is determined by set-
ting CFL number C ;= 0.8. See (2.13) for the definition
of C.. The nonreflecting boundary conditions are applied
at both ends of the computational domain.

Example 4.1 We begin by considering an interface prob-
lem in which the solution is a single contact discontinuity.
At 1 =0, we consider a polytropic gas has constant states

(pv u,p, %pw)L= (17 1’ 19 147 0)

and

(0. u, p, % po)r =(0.125, 1. 1, 1.2, 0)

separated by x =0.2. In the computation, we use 100 mesh
points. The profiles of pe, u, p and Zat = 0.12 are plotted
in Figure 4.

It is clear that # and p remain in equilibrium across the
interface within machine accuracy; no O(1) spurious os-
cillations are seen near the interface as those mentioned in
[1, 5,6, 10].

Example 4.2 Next we assume that the initial data consists
of a stiffened gas on the left with

(0, u, p, % poo)r = (10°, 0, 10°, 4.4, 6x10°)
is separated from a gas on the right With

(p’ u’p7 %poo)R = (509 Ov 105& 14’ 0)

along x = 0.7. This test can be regarded, Imtlally, as a E :

liquid on the left is separated from a polytropm gas on the
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Fig. 4 Numerical solutions of pe, u, p and Z at t = 0.12 are
marked by + signs. The solid line in each figure is the
fine grid solution generated by the same method and CFL
numbers, and 1000 mesh points.

right by a membrane. Breaking the membrane will result
in a left-going rarefaction wave, a right-going contact dis-
continuity and a shock wave. In the computation, 200 mesh
points are used. See Figure 5 for the resulting profiles of
p. u, p and Z at t = 0.00024.

In Figure 5, the profile of u has a over-shoot in the
region between 0.3 and 0.4, where the rarefaction wave is
connected to a flat region. This situation is caused by
MUSCL type central scheme itself. Similar phenomenon
is observed in [12] and has nothing to do with updating the
pressure in a non-conservative way.

Example 4.3 The third example is a shock-contact inter-
action problem used in which the interface is hit by a shock
wave coming from the heavy-fluid region. The initial data
is

(P’ U, p, yva)Lz (1’ 07 1, 14v O)v
x<0.5,

(p’ u,p, %poo)Mz (59 09 1, 4’ 1)’
0.5<x<0.6,

(D, U, P, 7. Podi = (7.093, -0.7288, 10, 4, 1),
x>0.6.

At ¢ =0, there is a stationary interface at x = 0.5 sepa-
rating a gas on the left from the stiffened gas on the right.
Also, there is a shock at x = 0.6, moving from right to left.
Once the shock hits the stationary contact discontinuity, a
right-going rarefaction, a left-going shock and a contact
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Fig.5 Numerical solutions of p, u, p and Z at 1 = 0.00024 are
marked by + signs. The solid line in each figure is the
fine grid solution generated by the same method and CFL.
numbers, and 1000 mesh points.
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Fig. 6 The profiles of re, u and p at t = 0.2 using 200 mesh
points are marked by + signs. The solid lines are the
plots of the fine grid solutions using 2000 mesh points.

discontinuity are generated. Profiles of pe, u and p at r =

0.2 are given below in Figure 6 using 200 mesh points.
From Figure 6, we can see that the shock, contact dis-

continuity and rarefaction wave are located correctly: The.,

result given here matches well with those ,produ‘,c‘:'evd‘by‘

Shyue in [10] vsing the Riemann—solver—based~ﬁ‘wayepropa—" )
gation method. R
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V. Conclusions

The most attractive feature of MUSCL type central
scheme is that it 1s Riemann-solver-free. Not only can it
be executed faster than tradtional Riemann-solver-based
methods, it can be applied to a wide range of applications
with only minor changes in the computer code. As is dem-
onstrated in §2, MUSCL type central scheme can be used
to solve single-component compressible Euler equations
with polytropic gas equation of state or stiffened gas equa-
tion of state. The Riemann-solver-free feature of MUSCL
type central scheme is further exploited in §4 to develop a
volume-fraction algorithm for multicomponent flows of
stiffened gases. The numerical tests we conducted show
that the method proposed in this paper is effective and is
capable of eliminating spurious oscillations in velocity and
pressure fields across material interfaces.
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