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ABSTRACT

This paper is an extension of a three-stage flowshop with a batch processor in the second
stage and discrete processors in the first and the third stage studied by Ahmadi et al. [3]. We
consider two variants where the batch processor is located in the first and third stage respectively.
The objective is to minimize the makespan. An efficient heuristic and a mathematical pro-
gramming model for each case are presented. We prove some properties that identify a specific
class of optimal schedule, and then use these properties in designing heuristics and the math-
ematical programming models. Computational experiences with the algorithms are also reported.
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I. Introduction

There are many practical systems incorporating
batch processor and discrete processor, for example,
semiconductor manufacturing, computer integrated
manufacturing, etc. Sung and Choung [1] stated that
batch processors can be divided into two categories
based on batch processing time pattern: (a) the process-
ing time is dependent on the jobs assigned in each batch,
(b) the processing time of each batch is fixed and inde-
pendent of the jobs grouped together in the batch. An
example of (a) is the burn-in oven process model wherein
the processing time of each batch is the maximum pro-
cessing time among those of jobs in the batch [2]. On
the other hand, the wafer fabrication process is an ex-
ample of category (b) wherein the independent process-
ing time scheduling models are applicable to batch pro-
cessing machines.

Ahmadi et al. [3] examined a class of problems de-
fined by a two or three machine flowshop with respect
to the sum of completion times and the makespan. Re-
gardless of the number of jobs contained in a batch, the
processing length of the batch is fixed and independent
of the jobs in the batch. They analyzed the complexity
of this class of problems, devised polynomial time al-
gorithms for some special cases, and presented heuris-

tic algorithms and their performance analysis. This prob-
lem had also been studied by Uzsoy et al. [4] and Webster
and Baker [5] respectively. Recently, Cheng and Wang
[6] considered a two-machine flowshop scheduling prob-
lem to minimize the makespan. Like the machine envi-
ronment considered by Ahmadi et al., the two machines
process the job either individually or in batches. They
assumed that the processing time of a batch to be a con-
stant for all jobs. They also show that these problems
are NP-complete in the ordinary sense and proposed
some polynomially solvable cases. Lin and Cheng [7]
considered a scheduling problem where a set of jobs
was simultaneously available for processing in a no-wait
two-machine flowshop wherein all jobs were processed
on both machines in batches. They also showed that
several restricted versions of the problem were strongly
NP-hard. Wang and Chern [8] considered a two-ma-
chine multi-family flowshop scheduling problem with
non-identical capacity requirements on two batch pro-
cessing machines. The objective is to find a sequence
of families and sequence of jobs in each family such
that the makespan is minimized. For the study of the
batch processor in a three-stage flowshop, Ahmadi et
al. [3] addressed the case in which the second stage is a
batch processor. They showed that this problem was NP-
complete in the strong sense and presented a simple heu-"«.
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ristic and established an upper bound on the worst case
performance ratio of the heuristic. This paper extends
Ahmadi et al.'s work to include other two variants
wherein the batch processor is located in the first stage
(case 1) and third stage (case 2) respectively. Accord-
ing to the notations devised by Ahmadi et al. [3], the
considered flowhsop problems could be denoted as
B—6— 6 for case 1 and 66— for case 2, where 3
and & denote a batch processor and a discrete processor,
respectively. An efficient heuristic and a mathematical
programming model for each case are presented. We
developed several solution properties which is the base
of our heuristics and the mathematical programming
models. Computational experiences with the algorithms
are also reported.

I1. Notations and formulation

As mentioned above, we consider a three-stage
flowshop with a batch processor in one stage and a dis-
crete processor in each of the other two stages. Two
variants to Ahmadi's case are considered separately. The
assumptions and notations are given as following:

1. The batch processing time for each job is a constant.

2. The discrete processor processes one job at a time
and the processing time is known and deterministic.

3. The capacity of the batch is known and fixed.

4. Jobs are not preemptive.

5. All jobs are available simultaneously at time zero.

To describe the problem, we introduce the follow-
ing notations:

Known Variables:

N: the number of jobs.

U: the capacity of the batch processor.

. the time needed to process a batch of jobs, 7 is
constant.

a;: the processing time of job k on the discrete proces-
sor in stage 1; k=1,2,...,N.

by the processing time of job k on the discrete proces-
sor in stage 2; k=1,2,...,N.

¢;: the processing time of job k on the discrete proces-
sor in stage 3; k=1,2,....N.

n: the number of batches, n=|_N/ U | where |—x‘| denotes
the smallest integer not less than x.

Decision Variables:

Zij.  if job k is scheduled at the jth position of the ith
batch;
Ziz=1: job k is scheduled at the jth position of
the ith batch;
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Z;3=0 : otherwise.
i=1,2,3,....n; j=1,2,3,..., U; k=1,2,3,...,N;

x;: theidle time of the jth job in the ith batch on the
discrete processor in stage 2; i=1,2,...,n; j=1,2,...,
U.

v theidle time of the jth job in the ith batch on the
discrete processor in stage 3;
i=1,2,...n; j=1,2,....U.

Cax the completion time of all jobs in the shop; i.e.
the makespan.

Auxiliary variables:

a;;: the processing time of the jth job in the ith batch on
the discrete processor in stage 1.
A;: the total processing time of the ith batch on the dis-
crete processor in stage 1.
by the processing time of the jth job in the ith batch on
the discrete processor in stage 2.
B;: the total processing time of the ith batch on the dis-
crete processor in stage 2.
c;: the processing time of the jth job in the ith batch on
the discrete processor in stage 3.
C;: the total processing time of the ith batch on the dis-
crete processor in stage 3.
Si: the start time of the ith batch on the batch processor.
F;: the completion time of the ith batch on the batch
Processor.
Oy the start time of the jth job in the ith batch on the
first discrete processor.
: the completion time of the jth job in the ith batch on
the first discrete processor.
Rj;: the start time of the jth job in the ith batch on the
second discrete processor.
: the completion time of the jth job in the ith batch on
the second discrete processor.

I11. Case 1 of the 3—d— 0 system.

Theorem 1. A full batch job schedule minimizes Cp,,.

Proof. The proof can be obtained by shifting-forward
some jobs in late batches. We omit the details.

Theorem 1 implies that it is sufficient for the opti-
mal solution to consider only the full batch schedules in
stage 1.

Definition 1. LOE (N, U): Batching in which the first
n — 1 batches all are of full capacity and the last batch

contains the remaining [N — (n — 1)U] jobs.

Property 1. The jobs scheduled in the same batch in-.
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stage 1 processed on the discrete processor in stage 2
consecutively (i.e. without inserted idle time) minimize
the makespan.

Proof. If the jobs scheduled in the same batch in stage
1 processed on the discrete processor in stage 2
consecutively, that is, the jobs are processed as early as
possible and no idle time incurred within the batch, the
makespan is therefore minimized.

Property 2. Sequencing the jobs on the discrete pro-
cessors in stage 2 and 3 using Johnson's algorithm will
km_ilnimize makespan if the following condition hold,

_21 B; X(k—1)xt, for k=2,3,..n, i.e., the discrete proces-
i=

sor in stage 2 is a bottleneck processor.
k-1
Proof. It follows from the condition 121 B, >(k-1)xt,

for k=2.3,..n that no idle time incurred in stage 2 and
therefore one need consider only the idle times incurred
in stage 3. This leads to the similar situation as typical
two-machine static flowshop problem and Johnson's al-
gorithm is thus used to obtain the optimal sequence.

A. Mixed integer programming

In this section, a mixed integer programming model
with [(N+4)B+2]n variables and (N+4n+6nB+B-2) con-
straints is formulated for benchmarking. The model is
formulated as follows.

Objective Function:

Min: Cyax

n U

;} kglzijk:l =1...N (1)
vy

‘21 kZlZ ks U i=l...n )
j=lk=

N
EIZ,,,( <1 =l j=lo.... U

) 3)
S,'ZFi_l =2 n (4)
Fi=Si+t i=1...... n (5)
0“SV,-.1_U =1, n (6)
0,'12‘/,'_1’(/ =2...... n (7)
0,-12V,-yj_1 i=l..... n ]=2 ...... U (8)

N
V,-,~=0,-,~+k§1(bk><Z,-,-k) i=l...n j=2...U (9)

R2V; i=1...... n j=1.....U
(10)
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RiuzCiau i=2......1 (11)
R2Cijr =Dt (12)
Cy=Ry+ S CexZy) i=lon j=l....U
f= (13)
Crax>Cy j=l..U (14)

Constraint (1) ensures that each job must be sched-
uled exactly once. Constraint (2) guarantees that the
number of jobs scheduled in one batch cannot exceed
the capacity of the batch processor. Constraint (3) speci-
fies that at most one job be scheduled at the given
position. Constraint (4) ensures that each batch starts
after its completion from the previous batch. Constraint
(5) defines the completion time of each batch. Con-
straint (6) ensures that each job in the same batch on the
discrete processor in stage 2 starts after its completion
from the batch processing in stage 1. Constraint (7) and
(8) indicate that each job in stage 2 starts after its comple-
tion time from the previous job. Constraint (9) defines
the completion time of the jth job in the ith batch in
stage 2. Constraint (10) ensures that each job in stage 3
starts after its completion time from the previous stage.
Constraint (11) and (12) indicate that each job in stage
3 starts after its completion time from the previous job
in the same stage. Constraint (13) defines the comple-
tion time of the jth ranked job in the ith batch in stage 3.
Constraint (14) defines the maximum completion time.

B. The heuristic algorithm

[t is seen from the theorem and properties described
above that in order to obtain the optimal solution, it is
necessary to process the jobs by applying full batch
policy in stage 1 and allocating the jobs consecutively
within each batch to the discrete processor in stage 2.

Initialization: Obtain an initial schedule

Let X; be the idle time preceding batch 7 in stage 2.
The value of the X, can be given by the following recur-
rence relationships.

-1 k-1
X, = max (nt— XX, - _;Bi,O) and thus

i=1

n—1 n—-1
iX,:max nt— 2B, XX,
i1 = Ui

i=1

n—1 n-2
—max[nt— S B, (-1t~ X B, .n2t~Bp 1]
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In the following discussions, we assume that the
assignment of the job within any batch in stage 3 is
shifted to the left and denote the idle time before batch
k as Y, as shown in Fig. 1. The following relation is
existed.

ZYk—max[ZX + ZIB +by - (ilci)7
g

i=1 i=1
(26‘[)3
=1

X1+X2+Bl+b2|—C1, X1+b11]

k-2
ZX+ZB+bk11

i=1 i=1

......

n
It is clear that the term AZ} C, is independent of the
i=
chosen sequence. Therefore minimizing Cy,,, 1S equiva-

lent to minimizing i Y;.

i=1

An examination of the lower bound on i Y, in-
stead of Z Y; itself makes it theoretically easier to de-

termine the sequence of the batches.
Denote the lower bound
n—1 n—1
X C) XX,

i=1 i=1

n n-1
L=max[X X, + X B~

i=1 i=1
n-2 n-2
+2B,-| XC,;l ...

i=1
LetH,= ZB—EC,,V =1,2,....n, and K,=u,~ z; B,

i=1 i=1 i=1

X +X,+B,-C X [1< ZY,~
i=1

- L= max [maxK,+H, )= max [K,
4=12,....n, then L = max [max = max [

+H,] where max K,=K,

Consider a sequence S that contains a pair of adja-
cent batches, J and J+1. Also consider a new sequence,
S', in which batches J and J+1 are interchanged. Itis
obvious that if batch J precedes J+1 then the following
relation holds. max(K+H,, K, +H;,)<max(K +H,
K +H' ;) where

K;+H;,=(J+1)t— ZB +ZC ZC -t-B

i=1 i=1 i=1

-1
Kjg+H, =0+t~ ZB +ZB - ZC

i=1 i=1 i=1

_BJ_CJ

K, +H,=(J+1)t- EB + ZB - ZC
i=1 i=1 i=1
~t;=B,.

Ky +H,,  =U+Dt- 23 + ZB - ZC
i=1 i=1 i=1

_BJ+1_CJ+1
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So we have implies that (K; + H;, K;,; + Hj,|) £ max
(K'+H';, K'y1+H'j;1). And then, the values of r+Bj,
Bi+C,, t+By,; and B, + C,, could be used to deter-
mine the order of batch J and batch J+1.

Improvement: perform job exchanges

1 1
Since the lower bound on ZIY,» instead of 'Z1Yi
1= =

itself is used, the sequence may be improved by the
pairwise interchange for jobs between two batches.

Consider a sequence S that includes a pair of adja-
cent batches, J and J+1, such that the total idle time
incurred by these two consecutive batches in the third
stage is (Y41, Yy42). Now construct a new sequence, S'
in which a job in batch J is exchanged with a job in
batch J+1 and the corresponding idle time incurred is
denoted as (Y ;.1+Y 110).

JillX +Ji2]X+ﬁ1B +§J,1B—
(iY+J§1Y+ﬁC+J] l),

Yy + Yy =max
J42

J+l J+1 J+1
2 X;+2 B - (2Y+ZC)

i=1 i=1 i=1 i=1

+J§XZB (Z Y,-+ZC,.),O

i=1 i=1 i=1 i=1

ilX +XJ+1+iX +X,+1+XJ+2

+ZB +BJ+ZlB

i=1

i Y, +i Yo+ Z{IC,.+C',+

i=1
J+1

3 B,
i=1

, J+l1
- i Yi+YJ+1+,Z Cil,

J-1
Z X+ X, + 2 B,+B,

i=1
|0
J~1

J-1
(E Y, + Z C,+C,;
J .
(J+1)t—ZIX,-—_ZIB,~—BJ,O
= =

Y +Y,=max ,il Xi+ X +X i+
iz

i=1 i=1

|

where X; . | = max and

X;,.,=max

J , J+1
(J+2)t—§,1X,~—XJ+1 'ZIB,»,O

|

Jt
'Z] Ci ’
I=
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By the above three cases, we know if the following
relationship holds then no job exchange is made.

J J
max[(]+1)t— > X,- 3 B;+B,~C,B,-C,
i=1 i=1

< max

i=

J J
J+Dt-2 X, - X B,+B;
i=1 i

+BIJ—C‘,,B}—C}] , Which is equivalent to C;, — B,
> C‘J—B'J

The step of the heuristic algorithm.

With the above results, the initial schedule can be
determined by using the values of 1 + B;, B;+ C, 1 +
Bj,; and By, + Cy, that, for a batching sequence the
rule max(t + By, By + Cyy1) < max(t + By, By + C))
satisfies the optimal sequence, besides, the rule C; — B,
> C'; — B'; implement the improvement of a given
batching sequence. If we assume that the processing
time of each batch is evenly distributed to jobs within
each batch, the rules max(¢ + By, |, By, + Cyy1) < max(¢
+ By, B;+ Cj) and C;— B; > C'y— B'; can be transformed

into max ([%l + byt o byiy ) < max ((ﬁl + by by +

e forJ=1.2,..,n, and ¢;j— by > cipy j— by j respectively.
The detailed steps of the heuristic is as follows:
Phase 1. Initialization: Determine the initial schedule.

Step 1. Le t* = [J— N

b
U _‘].tk =t*+bk,bz=bk+Ck,

U
k=1,2,.,N.

Step 2. Set my, = max(tz, b;), k=12,..,N. Allocate all
jobs to the batches by the ascending order of m;,
according to the LOE rule. Denote the resulting
sequence as the current schedule and calculate
the makespan.

Phase 2. Improvement: Perform the job exchange.

Step 1. Apply the pairwise interchange methods to ex-
amine whether it is possible to exchange the jth
job in the ith batch with the the j'th job in the
i+1th batch such that ¢;; — b < ¢jyy 7 ~ by for i
=1...... n;j=l... U. If yes, calculate the cor-
responding makespan. If the makespan is smaller
than the one in the current schedule, set the new
schedule as the current schedule.

Step 2. Applying Johnson's rule to the jobs within each
batch of the current schedule based on the val-
uesofbijandc,-j,i=1 ...... mj=1..... U.

Step 3. Calculate the makespan.

=
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Calculation of Lower Bound

By the LOE batching and property 1 that (N—(n—1)
*{J) jobs are contained in the last batch. Denote the set
L= {(n~-1)*U + 1, ..,N} and order the jobs in ascending
order of b, i =1...... N, the lower bound LB, is calculated
as follows:

LB, =[(n + 'ELbj +min (c;)]
Jje J

Also, let o be the makespan obtained by applying
Johnson's algorithm using the values of b; and c;, for i =
1,2,..N. The lower bound LB, is calculated as follows:

LB, =(t+ )
The lower bound LB = max (LB, LB;).
IV. Case 2 of 6—J5— [ system.
Theorem 2. A full Batch job schedule minimizes Cpyy.

Proof. The proof can be obtained by shifting-forward
some jobs in late batches.

Definition 2. FOE (N, U) batching in which the first
batch contains the first [N—(n—1)U] jobs and the next
[N—(n—1)U] batches all are of full capacity.

A. Mixed integer programming

The mathematical programming is similar to case 1
except that batch processor at the third stage as opposed
to the first stage.

B. The heuristic algorithm

Theorem 2 shows that it is sufficient for the optimal
solution to consider only the full batch schedule for
stage 3. For stages 1 and 2, the problem is treated as a
two-machine flowshop subproblem and Johnson's al-
gorithm is adopted. Again we are attempting to im-
prove the schedule by job exchange. Define the idle
time before the ith batch in stage 3 as Y;. Also, let

U U U
A;= Zlaij» B;= .Zlb i X = ,leij’ i=1,2,3..., n, as that
J= J= J=

in Fig. 2.

The value of the Y, can be given by the following
recurrence relationships.

n 7 n-1
Yn:ma (‘in"“_lej)_(_ZlYi"'(n_l)t)90 ,and
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nel nol ) x,+1,j-=maXLll+a1j+...+a1+1’jv—(lz+x1j+...

(ZX+ZB (n—l)t(§X+ZB

i=1 i=1

+Xr41, -1t b]J +..+b;, Lj'_l),o_l

i=1

\_/

ZY =max|-(n -2)¢, .. (i i

X+ 1,7 +1= maxl_ll taj+..+ar.,;— (lz +Xx;+ ...

X, +B, J
+Xr41,7t b[j +...+ b1+ l‘j'),OJ
Consider a sequence S that contains a pair of adja-

cent batches 7 and /+1 with (Y+Y,,;) being the sum of xXp= maxLll +ape,;— lz,OJ

idle time before batches 7 and I+1. Also consider a new

sequence S’, in which the jth job in batch 7 and the j'th Xpje1= maxl_ll +ap 1 ptagje

job in batch /+1 are interchanged with (Y'+Y',,) being

the sum of idle time before batches 7 and /+1. The situ- —(Lh+xp+by, j-),OJ

ation can then be described as in Fig. 3.

By Fig. 3, The following relations are derived. Xre1y = maxLll tapept+orag—(L+xy+..
Xp= max|_11 +ap— 12,0_] + X', Lj-1%1 b1+ Lyt + b, 1,j - 1),0_J
xI,j+ 1= maxl_ll + alj + al,j+ 1— (lz + le + blj),OJ X7+ Lj+1= max|_ll + alj +...+a;, Lji+1— (lz + xlj

1 a1 v | % Du| 9, d3u
X1 Xy % =0 x, x,~0 Xx;, X3u
b1,1 by b2,1 b2,U b3,1 b3,L ~~~~~~~
2
Y, T, r
t t t
3

Fig. 2. Gantt chart for §~6-f case.

h
1 a Ay | 9 Apry N R
L X, x[.j+1=0 Xty Xreit
2 bI.j bI,U b[+1,1 b1+1,j’ b[+1,U
b Y Yy
s e ' t t

Fig. 3. The Gantt chart illustrate the relationship between batches 7 and /+1.
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LRI % PR e S + b1+ l,j')?O—J ll +a’+1-j'+ +a1U_(12+b1+1x]"

<b1+1’j'+max+"' +b1’U_1),...,ll+a1+1’j'+alqj+l

Yi=maxlly + by + o + by + x5+ .. + Xy — (13),0)
Yigr=maxlly + b+ o+ byt g+ X+t X1y
~ 5+ Y, +0,0]
Yier=maxlly +byyy j+ e+ by g+ X+
+X 1 -+ Y +0,0]
Y= max|_12 bt byt Xt Xy
- (13),0]

Accordingly,

12+b1j+~-+b1+1,U+xlj+~«-+x1+1,U—l3—-t,
Y1+Y1+1 =ma
l2+b1j+"' +b1U+x1j+--- +x1U—l3,0

Yyt Y41 =ma , ,
12 +b1+l‘/"+"' +bIU+X[j+"' +x1U—l3,O

Thus it will be shown by the following two cases
corresponding to the situation of whether the jth job be-
ing exchanged with the j'th job.

Case 1. Suppose Y] + Y[+ 1= lz + blj + ...+ b[+ Lyt
Xy +...+x,+1,U—l3,—tand Y1+ Y‘[+1=(l’2+b1+1J
+ ...+ bl+ vt x'Ij + ...+ .X‘1+ LU= l3 - t). It is then
sufficient to show that if the relation x; + ... + x;, 1y <
X'+ ... + X1, y holds, then the exchange is unnecessary.
Since this relation involves only the idle time in stage 2,
therefore Johnson's rule is applied to obtain the optimal
solution. That s, if (a;.b; 4 1) < min(a; . 1 ;,by), then no
exchange for the jth job in batch I with the j'th job in
batch I + 1 is made.

Case 2. Suppose Y] + Y1+ 1= (l2 + b[j + ...+ bIU+ Xpt ..
+x1U—l3) and Y+ Y1+1 = 12+b1+l,j'+ ot bIU+~x'Ij+
... + X';y — I3, it is then sufficient to show that the ex-
change is unnecessary if the relation.

L+bj+..+by+x;+ . +xy—bL<bLh+b,y;
+ ..+ byy+x'y+ ... +xy— 3 holds.
This relation follows that
by+maxLl, +a;+ ... + apy- (b + by + ...

+ bl, U- 1),...,[1 +ag+ayiy— L+ bIj)Jl + a1j~l2_]
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Ly+bppptwbrputap++xpa,u-lz-6

—Uy+bp Ml tap, =1,
which is equivalent to
maxl_ll + ag + ..+ apy— (lz + b[,j+l + ...+ bl, U~ 1),

...,l] + apj+1— l2, 11 + aj + b[j_lz_l

Lhitapptetay—+b gt +b, )
< max wolirapy pta; =1y,

Lhitapj+br ;-1

that is, ifa,j <daj+ 1.7 and ap + b1j< aryy,jpt+ b]+ LJ
then (Y;+ Y, )<Y+ Vi ).

With the above results, we see that if (ay, by, 1, ;) <
min(a,+ 1,/ b]j) and a+ blj <ary1,;t+ b1+ Lj hold
then the exchange is not applied.

Property 3. Sequencing the jobs on the discrete pro-
cessors in stage 1 and 2 using Johnson's algorithm and
in stage 3 applying the FOE (first only empty) rule will

minimize makespan if the following condition hold.
k-1

2 Bizk-Dxt, k=23,n.
k-1
Proof. Since X B; 2 (k= 1)x 1, k=2,3,n, therefore the

makespan is determined by i; (B;,+X,)+1, where tis

a constant. This implies that the makespan is determined
by the processing of stage 1 and stage 2 and the Johnson's
algorithm is thus applied. Moreover, as Ikura and
Gimple [9] showed that FOE batching minimized the
makespan for a single batch processor with dynamic job
arrival times. This completes the proof.

The steps of the heuristic algorithm.

Step 1: Determine the initial sequence. Apply
Johnson's algorithm using the values of g; and
b, i=12,.N.

Step 2. Determine the batch allocation. Let n = [%l .
Allocate each job sequentially according to the
initial sequence and the FOE rule. Denote H,, i
=1,2,..., n as the job set for each batch.

Step 3. Improve the schedule. Apply the adjacent
pairwise interchange method to examine
whether it is possible to exchange the jth job in
H; with the j'th jobin H; , ;. Let a; andb;be the .
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Jthjobin H;, a; . jand b;, | ; be the j'th job in
H;, . Exchange job j with ;' such that the fol-
lowing conditions hold (i) min(ay;, b; , 1, ;) < min
(ai+ l,j"bij) (ll) a;+ blj <da;4+ 1,j + bi+ Lj and (111)
the makespan after exchange is better than the
original one.

Step 4. Continue step 3 until all jobs have been checked.

Calculation of Lower Bound

Let o be the makespan by applying Johnson's algo-
rithm using the values of a; and b;, i = 1,2,..,N. The
lower bound calculated is LB = (1 + o).

V. Computational results

The objective of the computational experiments
described in this section is to evaluate the performance
of the two heuristics presented in the previous sections.
Experimental results are divided into two parts. For N
< 35, the heuristic solutions were compared to the opti-
mal solution or the lower bound value obtained by the
mixed integer programming. For moderate or large
problem, the heuristic Solutions are evaluated with the
lower bound calculated in this paper. All experimental
tests are run on a personal computer with Pentium IV
1.4G MHz CPU. The integer programming models solve
the problems using LINGO Extended 5.0 software
package. Whenever the integer programming did not
give the solution within the upper limit time of 7200
CPU seconds, the lower bound value was recorded. The
lower bound value instead of the optimal solution will
be used to evaluate the performance of the heuristic
algorithm. Therefore, the actual values of solution qual-
ity of the proposed heuristic algorithms are slightly
higher than those shown in Table 1 and 2.

In the design of the test problem, we considered
various factors: number of jobs N, batch capacity U,
batch processing time #; and processing times of each
job on two discrete processor by and ¢, for case 1 and a;
and by for case 2. The details of the factors in the com-
putational experiments are listed below:

U, the capacity of the batch processor, was equal to
4,5, or 6.

t, the batch processing time, was equal to 20, or 30.
ay, by and ¢y, the discrete processing time of job %,
was uniformly distributed over the discrete interval
[1,10].

Ten test problems were generated and the average
performance measure of every 10 test problems were
calculated. To compare the performances of the heuris-
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tic for each case, the following formula is applied to
determine the solution quality of the heuristic schedul-
ing algorithm.

Solution quality =[(2 x optimal or lower bound)—
heuristic] / [(optimal or lower bound )] x 100%

For small problem, N was set from 2U to 32, or 35.
Table 1 and 2 summarize the computational results of
the heuristics for case 1 and 2 respectively. The param-
eters of this experiment were selected generate 'diffi-
cult' problem. Define the expected value of the discrete
processing time as ¢ , 4 = 5 in our experiment. In all

. . t
the experiments, the ratio U x

7 had a significant

effect on the relative performance of the heuristic ver-
sus the optimal solution or lower bound: performances
increase as the ratio 0.5 or 21.5 since less deliberate
idle time contained in these schedules.

As both tables show, the average computing time
of the integer programming model drastically increases
as the number of jobs increases in these two cases. When
the number of jobs is greater than 20, some of the test-
ing examples cannot be solved optimally within the al-
lowable pivoting limit. Therefore, the average execu-
tion time of the integer programming models is some-
what underestimated and the actual execution time is
higher than that shown in both tables. The average ex-
ecution time of the heuristic scheduling algorithms will
slowly increase when the number of jobs increases. For
case 1, when the number of jobs increases to 32, the
integer programming model requires 6500 seconds on
average to produce a solution. The average execution
time of the heuristic algorithm, however, is within 0.
003 seconds. For case 2, when the number of jobs in-
creases to 35, the integer programming model requires
6900 seconds on average to produce a solution. The
average execution time of the heuristic algorithm,
however, is less than 0.011 seconds.

The average solution quality is above 95.00% and
95.89% for 330 testing problems of case 1 and 340 test-
ing problems of case 2 respectively. The correspond-
ing average solution qualities are shown in Fig. 4 and 5
respectively. This is a conservative estimate of the so-
lution quality since the lower bound values instead of
the optimal values are used to evaluate the solution
qualities.

For moderate and large problem, the number of jobs,
N, is set to be 50, 100, 500 and 1000, since N = 1000 is
enough to what occurs in industry. Other parameters
including U, t, a, b; and ¢, remained the same as those
in small-sized test problem since these values generate
'difficult’ problem in which deliberate idle time contained
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Table 1. Execution time comparison and solution quality of the heuristic algorithm for 3—6-6 case.

Processing time | Capacity of the | Number of | Average execution Average execution Average solution
of the batch batch processor | job (N) time of Integer time of heuristic scheduling| quality. (%)
processor. (t) (0)] programming. (sec.) algorithm. (sec.)

t=20 4 8 202.5 0.0015 98.87114

10 502.8 0.0017 96.71878

16 1431.5 0.0018 97.12836

18 21935 0.0018 97.34228

20 2654.9 0.0021 95.11605

22 3242.1 0.0021 95.16492

25 3827.6 0.0020 97.21026

27 4491.5 0.0020 94.81365

32 6445.7 0.0021 94.96481

35 7121.6 0.0030 94.54146

5 10 603.2 0.0017 99.08394

16 1431.5 0.0019 95.20034

18 2262.5 0.0019 96.80851

20 2762.4 0.0021 08.54699

22 3426.2 0.0021 | 96.53823

25 4210.3 0.0022 95.87561

27 4961.8 0.0021 | 9424476

32 6518.7 0.0028 94.67822

35 6847.6 0.0031 93.82346

t=30 4 8 267.4 0.0015 95.23105

10 487.5 0.0015 96.36929

16 1517.2 0.0019 95.20656

18 2263.5 0.0018 92.15222

20 2542.9 0.0019 93.94391

22 3147.1 0.0019 91.92822

27 4391.5 0.0023 91.09435

32 6345.7 0.0024 91.42023

6 16 1837.4 0.0020 94.55525

18 2533.5 0.0019 93.71325

20 2830.8 0.0018 93.05086

22 3437.3 0.0021 92.57516

27 4221.4 0.0021 94.51936

32 6635.6 0.0023 92.56374
in two discrete processors. The experiments show that capacity of the batch gets larger. The reason is that is
both heuristic find solutions for each of these instances may incur more job combination within each batch. The
in no more than 2 of a second. Table 3 summarizes the performances appear in descending trend as the value
average solution quality for both heuristics. As seen in of Nincrease. This implies that the proposed heuristics

the table, the heuristic solution get slightly worse as the do not work well for the problem instances with the .
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Table 2. Execution time comparison and solution quality of the heuristic for 6—-6-f3 case.

Processing time | Capacity of the | Number of | Average execution Average execution Average solution
of the batch batch processor | job (N) time of Integer time of heuristic scheduling| quality. (%)
processor. (t) U) programming. (sec.) algorithm. (sec.)

t=20 4 8 202.5 0.0044 99.11326
10 483.8 0.0047 97.82994

16 1431.5 0.0063 95.59362

18 2241.6 0.0058 94.15464

20 2773.4 0.0061 96.00602

22 3213.8 0.0072 96.85147

25 3726.6 0.0070 96.00779

27 4591.5 0.0081 92.76741

32 6445.7 0.0083 92.48758

35 7081.6 0.0085 93.42699

5 10 603.2 0.0044 98.58747

16 1431.5 0.0058 97.81804

18 2262.5 0.0055 96.10165

20 2762.4 0.0063 98.21363

22 3414.5 0.0071 98.94675

25 39103 0.0075 96.24081

27 4469.2 0.0080 96.26341

32 6292.5 0.0113 96.08116

t=30 4 8 247.2 0.0035 93.75128
10 5395 0.0055 96.36929

16 1772.2 0.0069 95.20656

18 2453.6 0.0071 95.08833

20 2846.9 0.0079 96.43516

22 3263.1 0.0076 96.78393

27 4679.3 0.0078 94.96971

32 6625.7 0.0079 94.22799

35 6947.1 0.0075 96.90426

6 16 17314 0.0063 94.55525

18 2365.5 0.0063 93.35717

20 2830.8 0.0068 93.05086

22 32771 0.0071 99.31947

27 4518.6 0.0072 95.48007

32 6397.2 0.0080 95.13986

35 6841.5 0.0081 97.31481

number of jobs being larger than 500. However, It can
be seen that for job size equal to 1000, the average solu-

tion quality is still having 84.10% and 86.38% B-6-0

and 6—6-f case respectively. It illustrates that the pro-

VI. Conclusion
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posed heuristics can solve large size problems sub-opti-
mally fairly quickly.
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Fig. 4. The average solution quality for f~&-6 case.

Fig. 5. The average solution quality for 5—6-f3 case.

Table 3. The solution quality of the heuristic algorithms for f—6—6 and 6—6—f3 cases.

Processing time Capacity of Number of Average solution Average solution
of the batch the batch job (N) quality. (%) for quality. (%) for
processor. (t) processor (U) B-6-6 6-0-p
t=20 4 50 91.23915 92.27294
100 90.05168 92.13415
300 90.92387 91.32850
500 88.37615 88.27631
700 86.05293 87.47211
1000 85.13726 86.37703
5 50 90.51031 95.23362
100 90.51094 95.16570
300 88.17263 93.62703
500 87.59462 90.57601
700 85.29843 91.18093
1000 86.14802 92.33829
t=30 4 50 90.45620 95.13215
100 88.23002 92.87623
300 86.90039 93.38972
500 84.54763 91.47652
700 84.57398 92.33773
1000 84.10234 91.03973
6 50 92.01436 914.24902
100 91.37625 95.21043
300 88.26562 92.89731
500 87/41372 93.62438
700 85.41032 91.46782
1000 85.07052
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This paper has considered the three-stage flowshoop
with a batch processor at the first and third stage
respectively. We extend Ahmadi's three-stage flowshop
shop problem in which the second stage is a batch
processor. An integer programming and a heuristic for
both problems are provided. Our results show that the
heuristics are capable of obtaining high-quality solutions
with very short computational time.
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