ERPR FME B=H RKEHATE
Journal of Nan Kai, Vol. 4, No. 3, pp.9-14 (2007)

A Binary Image Segmentation Algorithm

Using Dynamic Stack

Shye-Chorng Kuo', Shyi-Shiun Kuo®, Yu-Hua Yu?, Meng-Tu Lee?

! Department of Electronic Engineering,
Nan Kai Institute of Technology

? Department of Computer Science and Information Engineering,

Nan Kai Institute of Technology

Abstract

Image segmentation is an essential task in image processing. Segmentation is the process

that subdivides an image into its constituent parts or components. The algorithms of

segmentation are generally based on discontinuity or similarity of the grey-values of pixels. The

conventional methods are thresholding, edge-based approach, region growing, and region

splitymerge, etc. Generally, the segmentation algorithms are complicated and hard to be

implemented by the computer program languages and they are often time consuming.

In this paper, we propose an algorithm to handle the process of a binary image

segmentation by dynamic stack, which can successfully segment the different components

within the binary image and the most important of all is that the algorithm can be easily

implemented by the computer program languages because of the characteristics of operations on

the stack with short time consumption.

Keywords: Image segmentation, binary image, stack, thresholding

1. Introduction

Image segmentation plays an important role in many
applications of the image processing and pattern recognition
whose performances are significantly influenced by the result
of image segmentation. Large amounts of segmentation
algorithms have been developed [4, 10]. Traditionally, these
segmentation techniques can be classified into two categories:
boundary representation and regional representation. The
algorithms are based on one of two basic properties of
grey-level values: discontinuity and similarity. In the boundary
representation, the approaches are to partition an image based
on abrupt changes in grey level, such as the detection of

1solated points and the edges in an images [2, 5, 6, 11]. In the

regional representation, the approaches are based on label
region, region growing and split/merge algorithms [1, 3, 7, 8,
12]. In the field of image segmentation, the fundamental
methods are applied to binary image. The effective method of
segmentation of binary images is by examining the
connectivity of pixels with their neighbors and labeling the
connected sets. Two practical methods are Pixel labeling and
Run-length connectivity analysis [9]. Often, the algorithms for
segmentation are either complicated to be implemented by the
computer program languages or time consuming.

In this paper, we present an algorithm that bases on the
idea of the Pixel labeling and uses the stack to record the
interesting pixels within the 8-neighbor of the current observed

pixel by the basic operations of stack: push and pop. The

10 A Binary Image Segmentation Algorithm Using Dynamic Stack

algorithm we proposed is not time consuming since it doesn’t
use the arithmetic operations but only conditional operations
and pushing or popping the data to or from the stack and can
successfully and also efficiently segment the isolated
components within the processing binary image .

We introduce the details of the algorithm in section 2.
Section 3 presents the experimental results and the conclusions

are drawn in section 4.
2. Method

Before we go on to discuss the algorithm, we are first to
describe the hypotheses as below:

(1) Assume a binary image with width pixels in width and height
pixels in height, where width and height are both integer
values. The border of the image 1s with one pixel wide blank.

(2) Use a 2-D array to store the image and conveniently we
declare the array as image[width, height].

(3) If the pixel is a constituent part of a component in the
original image, the pixel’s color (or value) is equal to ‘1° |
otherwise the pixel’s color is equal to “0”.

(4) Define 8-neighbor of a pixel:

If a pixel is at the location (x,y) and with the color p, that is
p= image[width, height], the locations of its 8 neighbors are
defined as (xy-1), (x+1y-1), (x+1y), (x+1Ly+1), (xy+1),
(x-1y+1), (x-1y), (x-1y-1).Then we define an array,
plili=2~9, to record the color of each 8-neighbor, where
pl2]=image[xy-1], p[3]= image[x+1y-1], p[4]=
image[x+1y], p[5]= image[x+1y+1] p[6]= image[xy+]],
pl7]= image[x-1Ly+1] p[8]= image[x-1y] p[9]=
image[x-1,y-1].

(5) Define a dynamic stack : Stack
Stack records the x-y coordinates of a pixel and can
dynamically change the length.

(6) Define the three operations on the stack:

IsEmpty(Stack): Reports whether the Stack is empty or not.
PUSH(Stack,x,y): Places the x-y coordinates of the current
observed pixel on the top of the

Stack.

POP(Stack,x,y). Removes the x-y coordinates of the pixel
from the top of the Stack.

Now we describe the algorithm as follows:

The procedure begins to scan the pixels one by one within

the 2-D binary image from left to right and top to down, that is,

to scan the pixels row by row from top to down.

While the pixel’s color is equal to 1, the algorithm chooses
this pixel as a seed and marks this pixel with the successive
color that 1t often increases the current value by one and creates
a dynamic stack to push the x-y coordinates of the pixel whose
color is equal to 1 among 8 neighbors, meanwhile, interrupts the
scanning.

Then, pop the stack to obtain one neighbor as a seed and
executes the previous steps until the stack is empty. When the
stack is empty, one component is segmented from the image and
the scanming continues from the previous interrupted pixel to
search another new seed and the previous steps are repeatedly.

The procedure stops until the last pixel is scanned in the
image, then all the components within the image are found and
the pixel’s colors of the different components are marked with
the different ones.

In order to expound clearly, the explicit instructions of the
algorithm are presented as follows:
color=1
Fory =0 To height - 1

For x=0 To width - 1
If (image(x, y) 1s equal to 1) Then
color = color + 1
image(x, y) = color
Store the pixel color of each 8-neighbor to pfi], i=2-9.
Fori=2To9
If (p/i] is equal to 1) Then
Call PUSH(Stack, xc, yc)
/* xc: the x-coordinate of pfi],
ye: the y-coordinate of pfi]
End If
End For
While (IsEmpty(Stack) is equal to False)
Call Pop(Stack, xc, yc)
image(xc, yc) = color
Store the pixel color of each 8-neighbor to pfi], i=2~9.
Fori=2To9
If (pfi] 1s equal to 1) Then
Call PUSH (Stack, xc, yc)
/* xc: the x-coordinate of pfi],
ye: the y-coordinate of p[i]
End If
End For

ERBE B0

End While /* End of while
End if
End For /* End of x for- loop
End For /* End of y for- loop

3. Experimental Results

In this section, three images are used to demonstrate the
validity and the efficiency of our proposed algorithm. The first
image is Target as shown in Fig. 1(a) and its split result is shown
in Fig. 1(b), where the separated segments are spread with the

different colors.

Fig. 1(a) Target

Fig. 1(b) The split result of Target

Second, a complicated texture image but is only with two
separated components indeed and the split result are shown in

Fig. 2(a) and Fig. 2(b) respectively.

Fig. 2(a) A complicated texture image

Fig. 2(b) The split result of the complicated texture image

F=H REN+F 11

Third, a Chinese and numeric character image is shown in

Fig. 3(a) and its split result 1s shown in Fig. 3(b).

i fi (049)2563489

Fig. 3(a) A Chinese and numeric character image

B (4902563489

Fig. 3(b) The split result of the Chinese and numeric

character image

The first and the second test images are of the sizes of 320x
200 and the last is 796x108.

All the test images are in black and white BMP format and
the resolutions are all in 300DPI. The proposed algorithm is
implemented by using programming language Basic on Intel

Celeron 2.8 GHz.
4. Conclusions

In this paper, we have proposed an efficient binary image
segmentation algorithm that can partition the image into the
significant segments robustly as showing in section 3 and is
easily implemented by computer program languages and is also
with short computation time.

Now, the proposed algorithm is only applied to binary
image, but the applications of the binary image are not
extensively used, where they are often used in OCR. Besides,
the 3D images such as MR images are prevalent recently.
Therefore, we will evolve the proposed algorithm to deal with
the segmentation of color images and further the segmentation

of 3D images in the future research.
References

[1] Adams, R, and Bischof, L., “Seeded region growing,”
IEEE Trans. on Pattern Analysis and Machine
Intelligence, Vol. 16, No. 6, pp. 641-647(1994).

[2] Canny, J. F., “A computational approach to edge
detection,” IEEE Trans. on Pattern Analysis and Machine
Intelligence, Vol. 8, pp. 679-698(1986).

[3] Chang, Y L., and Li, X., “Adaptive image

12

[4]

(3]

[6]

[7]

(8]

A Binary Image Segmentation Algorithm Using Dynamic Stack

region-growing,” IEEE Trans. on Image Processing, Vol.
3, No. 6, pp. 868-872(1994).

Fu, K S, and Mei, J. K, “A survey on image
segmentation,” Pattern Recognition, Vol. 13, pp.
3-16(1981).

Gonzalez, R. C., and Woods, R. E., Digital Image
Processing. Reading, MA: Addison-Wesley(1992).
Helterbrand, J. D., “One-pixel-wide closed boundary
identification,” IEEE Trans. on Image Processing, Vol. 5,
No. 5, pp.780-783(1996).

Hojjatoleslami, S. A., and Kittler, J., “Region growing: a
new approach,” JEEE Trans. on Image Processing, Vol. 7,
No. 7, pp. 1079-1084(1998).

Hong, T. H, and Rusenfeld, A., “Compact Region
Extraction Using Weighted Pixel Linking in a Pyramid,”
IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 6, No. 2, pp.222-229(1984).

[9] Jain, AK., Fundamentals of Digital Image Processing,
Prentice-Hall, pp.409-410(1989)

[10]Pal, R, and Pal, S. K., “A review in image segmentation
techniques,”
1277-1294(1993).

[11] Sahoo, P. K., Soltani, S., and Wong, A. K. C., “A survey
of thresholding CVGIP 41, pp.
233-260(1988).

[12] Tremeau, A., and Colantoni, P, “Regions adjacency graph

Pattern Recognition, Vol. 26, pp.
technique,”

applied to color image segmentation,” IEEE Trans. on

Image Processing, Vol. 9, No. 4, pp. 735-744(2000).

IKFR: © 95/03/05
P 1 95/03/08

& © 95/04/15
B 1 95/06/10

ER2E HUE F=H REATE

EREEIERERE B EUEINESE
ghittss |, S, A, R

1 FEBAE bR T T &
2 MBI EREATIER

B =

TRUIEER G S R — HRE RN LI - AT EI R — G B R L L Y
T T et - — MG YIRS EAE RN A T R B IR B (i H i T BB U T A
TTHER - MR EAR AP TEAE - BFSERAINIEITE - B R @RS &
FF - MEBUERERETEEN EAE S LRAGESKER - T HSI T -
AR BB EFE B RRER R A ARSI RREE: - T
I AEFAG B IR - SREERETAFIFTHR S - R
BRI - RHRER SN DR EES ARTE - T BT RS -

BREHED : a8 - (g - HB - PURE

13

