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Abstract

This study supports an efficiency formula for more simply and more speedily
calculating the approximation value of the cumulative distribution function of
standard normal distribution. We combine this formula with the probability of default
(PD) models, such as the Kealhofer—-McQuown—Vasicek (KMV) model and Merton
model, to analyze the following issues: (1) the simple and efficient calculations on
PD; (2) the relationship between a firm’s capital leverage and its asset risk under a
given PD; and (3) the changes of PD when the firm changes its capital structure or
its asset volatility. Numerical examples using Standard & Poor’s (S&P) credit rating
reports and Taiwan Corporate Credit Risk Index (TCRI) credit rating data illustrate
the application of our formula. The results reveal that our formula owns a better
applicability in practice for analyzing the PD compared with the formula shown in
Edous and Eidous (2018). Our results also provide market participants the following
useful financial information: (1) the influence of firm’s capital leverage ratio on its
asset risk has the largest effect for the worst credit quality; an increase on debt of
asset (or asset volatility) induces a raise in the PD; (2) the influence of the asset risk
on PD is larger than the influence of the capital leverage ratio on PD; and (3) if the
firm in the worse credit rank, the change of its capital structure has great influence
on its PD. On the financial applications, our formula can help market participants to
easily understand how sensitive PD is to changes in its relevant variables. This not
only can help market supervisors to manage the default risks for financial institutions,
but also can help market participants to undertake the optimal investment decisions
for the portfolios with default risks.

Keywords: Approximation, Normal Distribution, Default Probability, Capital
Leverage Ratio, Asset Risk

JEL: C02, C60, G11
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I. Introduction

In the theory of financial risk management, many market participants focus
mainly on the estimation of extreme situations, such as the probability of default
(PD). For evaluating the PD, there are two common methods: the structural-
form approach and the reduced-form approach. The idea of pricing risky
securities with PD first started with a structural-form approach (Merton, 1974;
Black and Cox, 1976; Leland, 1994; Ambrose and Buttimer, 2000; Azevedo-
Pereira, Newton and Paxson, 2003). This approach uses the market data to
estimate the bank’s asset value and its asset volatility, and then calculate the PD.

The reduced-form approach usually specifies the unpredictability of
defaultable events as exogenous random variables that follow a Poisson
distribution (Jarrow and Turnbull, 1995; Jarrow, 2001; Kau, Keenan and
Smurov, 2004; Liao, Tsai and Chiang, 2008; Tsai, Liao and Chiang, 2009;
Tsai and Chiang, 2012). The market information on hazard rate is used to
calculate the PD. For the empirical analyses related with PD, several studies
have employed Cox’s proportional hazard model and either logistic or Poisson
regression models to investigate which factors significantly affect the PD (e.g.,
Cox and Oakes, 1984; Schwartz and Torous, 1989, 1993; Lambrecht, Perraudin
and Satchell, 2003). Our study discusses the PD with the structural-form
approach.

In real world applications, the two models, belong to structural-form
approach, are famous on the calculations of PD: the Kealhofer—-McQuown—
Vasicek (KMV) model and Merton’s model. No matter using KMV model or
Merton’s model, the PD is calculated by the cumulative distribution function (CDF)
for a standard normal distribution. Thus, market participants need a formula that
can help them to efficiently and conveniently calculate the normal CDF for the

tails of the normal distribution. Moreover, such formula is better to help them on
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the analyses of risk management. The main purpose of this paper is to provide a
simple formula that can satisfy the requirement for market participants.

In traditional studies, because there is no explicit formula for the indefinite
integral of a normal distribution, many scholars have advocated implicit
formulas to approximate the normal CDF (Zelen and Severo, 1964; Marsaglia,
2004; Bowling, Khasawneh, Kaewkuekool and Cho, 2009; Soranzo and
Epure, 2014). However, most of these formulas are difficult for practitioners
to apply because they are quite complex. For overcoming such drawback, this
study intends to provide a simple formula for calculating the normal CDF. The
estimating error for the tails of the normal CDF distribution using our formula
is quite small. Thus, our formula is very well suited for the analyzing extreme
cases that financial risk theories focus on. For example, it can improve the
calculation speed for the influence of various variables on the PD in response
to changing economic conditions and in turn can help market participants to
effectively measure their risks and undertake hedging strategies.

To illustrate the application of our model, we use the data published by
Standard & Poor’s (S&P) Rating Corporation to provide a numerical example.
For comparison purpose, we also adopt the data reported from Taiwan Corporate
Credit Risks Index (TCRI), which is created by Taiwan Economic Journal
(TEJ), to conduct the numerical analyses. Our analyses can show how market
participants obtain more useful information, such as the influence of the asset-
debt ratio and asset volatility on PD, by using our formula and the model of
PD (such as KMV model and Merton’s model). Our formula does not only
significantly increase calculation speed in the more complicated analyses of
investment decisions, but it also enables market participants to better understand
how sensitive PD is to changes in the relevant variables in numerical analyses.

The remainder of this paper is organized as follows. In Section II we

describe the procedure for obtaining a simple formula that approximates the



The Analyses of Default Probability by an Efficient Approximate Formula for
the Cumulative Distribution Function of Standard Normal Distribution

normal CDF. In Sections III and IV, we show how our formula is applied in
obtaining values for PD. Finally, in Section V, we summarize our findings and
offer suggestions for future research.

I1. A Simple Formula for the Normal CDF

There are many scholars try to support implicit formulas to approximate the
normal CDF (Zelen and Severo, 1964; Marsaglia, 2004; Bowling et al., 2009;
Soranzo and Epure, 2014). In Appendix, we summarize some implicit formulas
for the normal CDF that were provided in previous studies. For example, as
shown in the second column of table in Appendix, the formula provided by
Norton (1989) as follows:

2 +1. 8
N(x) = ;exp(—lezx), for0<x<2.7, (1)

where N(x) is the function of normal CDF.

In financial theories, the estimations and the analyses for PD are important
for financial supervisors who want to efficiently manage the financial
institutions. It is also important for market participants who want to invest on the
defaultable bonds and risky stocks for constructing a portfolio. In the uses of the
structural-form approach, such as the KMV model and Merton’s model, because
the asset return is usually assumed to be normally distributed, the normal CDF
is commonly appeared in the calculations for the option price and the PD. As
well know, the normal CDF is expressed by an integral form. Thus, the value of
normal CDF is usually obtained by the numerical method because there is no
explicit formula for normal CDF. This will greatly restrict the calculations and
analyses of PD for market participants. For example, if one only has a simple
calculator which cannot perform the numerical calculation, (s)he cannot obtain
the value of PD based on the integral form of normal CDF. Moreover, if one

o 7 o
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does not understand the Leibniz integral rule, (s)he may uneasy to understand
the sensitivity analyses of PD. Thus, to support an explicit formula for normal
CDF is important for financial supervisors and market participants.

However, as shown in Appendix, most of the explicit formulas for normal
CDF are sophisticated in application. It derives our motivation to support a
simple formula of normal CDF for financial supervisors and market participants
who want to easily and quickly calculate the PD. Our formula can be effortlessly
used to analyze the changes of PD due to the changes of influential factors, such
as the equity/asset ratio and asset risk. Accordingly, it can help the financial
supervisors to manage the bankruptcy risk of financial institutions and assist the
market participants to construct a portfolio including defaultable securities and
to hedge this portfolio.

Because the normal distribution is bell-shaped, here we show only the
formula for the right side of the distribution, that is N(x) > 0.5, where N(°) is the

traditional normal CDF. Our approximate formula is:
Nx)=1-ae”, forx e N'(C), 2)

where g, and b,, both positive values, are the parameters for the range N '(C));
C, is the range of the probability; i is the index of this range; and N '(*) is the
inverse of the normal CDF. Thus, N '(C)) is a domain of random variables
corresponding to the probability range C,.

Some researchers have advocated a different although similar formula
for estimating the normal CDF (Chiani, Dardari and Simon, 2003; Olabiyi and
Annamalai, 2012a, 2012b). Because they try to fit the normal CDF for the entire
range of x, their formulas are quite complex and difficult to apply. We argue
that for financial purposes the approximate formula needs not fit the normal

CDF for the entire range of x, because most market participants focus only on
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the probabilities of extreme cases (e.g., likelihood of a huge loss, i.e., a tail
probability). Thus, to simplify the formula for calculating the normal CDF, we
divide x into intervals. Compared with the formulas used in traditional studies,
our formula has the advantage of greater efficiency of calculation, making it
more convenient for practical applications.

Here we provide a numerical example to illustrate the practical application
of our formula. We divide the estimation range from 50% to 100% into 5%
intervals.' In our example, there are ten classification ranges: C, = [0.50, 0.55),
C, =[0.55, 0.60), C; = [0.60, 0.65), C, = [0.65, 0.70), Cs = [0.70, 0.75), C, =
[0.75, 0.80), C, = [0.80, 0.85), C; = [0.85, 0.90), C, = [0.90, 0.95), and C,, =
[0.95, 1.00); [ , ) denotes a semi-open interval. For each range, we determine the
critical values N '(C,) and estimate the corresponding parameter values g, and b,

by minimizing the following sum square error:

Min | Y. (N@)—(1—ae"™)). 3)

ab \ xeN(C)

We let the value of x increase by 0.001 from its minimum to maximum
value in each range of estimation. Table 1 shows the estimates of a; and b;
for each range and the maximum error of the corresponding probability. The
maximum error is defined as the maximum absolute value of the difference
between the value of N(x) and the value of 1 — a,.e’b""2 for each x in the range.
As shown in Table 1, for the ranges N(x) > 70%, the maximum error is always
less than 107 (0.1%). For example, for range 10, [0.95, 1.00), the estimated

parameters are a,, = 0.2402 and b,, = 0.5870, and the maximum error is only

' Other size intervals could also be used.
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9.2706 x 10™* (0.093%). Figure 1(a)—1(f) show that for the ranges 5—10 the

,h’_XZ

curves for M(x) and 1 —ae”" are quite similar to one another.

As assumed in many financial theories, market participants care mainly
about the risk associated with extreme events, i.e., N(x) > 95% or N(x) < 5%.
Thus, the results in range 10 demonstrate that our formula is very well suited for
calculating the probability of extreme events in real world applications. For N(x)

> 95%, our formula can be expressed as:

N(x)=P(X<x)=1-0.2419¢ """ for x> 1.645. (4)

Table 1 Estimates of the Parameters and the Maximum Errors of Probability
Using Our Formula

The estimated parameter

The range Description a; b; Maximum error
Range 1 50-55% 0.489107 6.062478 0.010893
Range 2 55-60% 0.464425 2.420855 0.002993
Range 3 60—-65% 0.441023 1.584038 0.001612
Range 4 65-70% 0.418089 1.218315 0.001092
Range 5 70-75% 0.395398 1.013725 0.000797
Range 6 75-80% 0.372431 0.881580 0.000617
Range 7 80-85% 0.348449 0.787432 0.000516
Range 8 85-90% 0.322229 0.714738 0.000470
Range 9 90-95% 0.291310 0.653914 0.000474
Range 10 95-100% 0.240188 0.586986 0.000927
Range 11 99-100% 0.202436 0.557284 0.000081

The first column gives the estimated ranges. The second column gives the eleven ranges in our
classification scheme. The third and fourth columns give the estimates of the parameters ¢, and b,. All
parameters are estimated by minimizing the mean square error in each range, as described in Equation
(2). The final column gives the maximum errors, defined as the maximum absolute value of the difference
between N(x) and 1 — a,e"’""2 for each x in the range.

e 10 o
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(a) The estimated results in range 5

(b) The estimated results in range 6

Figure 1 The True Normal CDF and Estimated Normal CDF in the Ranges 5-10
of Our Classification Scheme
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(c) The estimated results in range 7

(d) The estimated results in range 8

Figure 1 The True Normal CDF and Estimated Normal CDF in the Ranges 5-10
of Our Classification Scheme (continued)

e 12 o
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(e) The estimated results in range 9

(f) The estimated results in range 10

Figure 1 The True Normal CDF and Estimated Normal CDF in the Ranges 5-10
of Our Classification Scheme (continued)

The y-axis represents the normal CDFs. The x-axis is the x values. The solid line and the
dotted line respectively represent the values of N(x) and the values of 1 — g,e”*.

* 13 o
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This formula is similar with the formula provided by Olabiyi and
Annamalai (2012a, 2012b) that is shown in Appendix. Our formula of normal
CDF seems quick simple in application. In financial risks management, it only
needs a simpler formula for the efficiency calculation in extreme situations, such
as PD. In the following section, we show how one can use this simple formula to
effectively calculate the PD and also provide the numerical example to illustrate

how one use it to undertake risk management for complicated portfolios.

II1. An Application of the Formula to Obtain the PD

Analyzing the PD is essential for workers in the financial sector because
the greatest losses for financial institutions come mainly from default. The KMV
model, supported by KMV Corporation, is a famous model, used for measuring
the PD by market participants. In this model, it calculates the distance to default
(hereafter denoted as DD) and then estimate the PD. The value of DD is defined
as the distance between the asset value and the default point (hereafter denoted
as DPT). We denote the formula for DD as follows (see Crosbie and Bohn,
2003):

_ 0)-DPT _ n

bD (0)o, o, )

where V(0) is the asset value at the initial time; o, is the instantaneous standard

1(0) — DPT(0)
10)

CD(0) + %LD(O), is the default point at the initial time; CD(0) is the short-term

deviation of a firm’s asset return (i.e., asset risk); 1 = ; DPT(0) =

debt at the initial time; and LD(0) is the long-term debt at the initial time.
Similar with the structural-form approach, when assuming the asset value to

follow a log-normal distribution, the PD calculated from KMV model is expressed as

e 14 o
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p=N(DD), (6)

where p is the PD. If the firm is still active, we usually have DD > 0. In KMV
model, the auditing time, the point at which one can judge whether or not the
firm is bankrupt, is usually assumed to be one year.

Next, we show how using our formula and KMV formula provides the
interesting and useful information for the risk management. According to
Equations (2), (5), and (6), we have

p=ae"”” and DD = b, (Ing, — Inp). (7)

Using these formulas, one can deduce the relationship between DD and p. In
Equation (7), a; and b, are known parameters. For example, if we let p < 5%, one
can derive the following formula to determine the relationship between DD and p,
that is

DD =+/-2.4299 — 1.7036 Inp . (3

The formula in Equation (7) is also useful for analyzing other issues related
to PD. For example, we can derive the partial derivative of p with respect to DD
as follows:

op _  hDD, _
app e x (-2b,DD) =-2pb,DD. )

We have 6la)pD < 0, which means that the relationship between DD and p is

negative. Moreover, if the distance of default increases one unit, then the PD

decreases by the amount of -2pb,DD.

¢ 15 o
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Furthermore, by using Equation (9), one can easily measure the influence

of'n (or 6,) on default probability p. We have:

op __op oDD __2pbDD
on oDD 0y o,

<0, and (10)

2
op _ _Op oDD _ 2pbDD >0, (11)
oc, 0DD oo, o,

Thus, an increase of n induces a decrease in the PD of a firm. Namely,
2pb,DD

Gy
On contrast, an increase of o, induces a raise in the PD of a firm. That is, if

if n increases one unit, then the PD reduces by the amounts

the asset volatility increases one unit, the PD then increases by the amounts

2pb.DD’
Gy

changes of PD when the firm changes its capital structure or its asset volatility.

. The market participant can use these formulas to analyze the

Moreover, the influence of increasing the asset risk (o,) on the PD is stronger
(weaker) than that of increasing the equity-asset ratio on the PD if the DD is
larger (less) than 1.

Market participants may want to know the relationship between a firm’s capital
leverage and its asset risk if the PD is known. Our formula can achieve this objective

with great ease. For example, if p = p, the relationship between 1 and o, is:

c,=&n, (12)

1
where & = (b;'(Ing, — Inp)) *, a deterministic value. Using this formula can
investigate the relationship between a firm’s capital requirement and its asset

risk based on the following equation

¢ 16 ¢
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do, _
W_Z} (13)

In other word, it is the linear relationship with slope & between the firm’s equity-
asset ratio and its asset risk given the PD in KMV model. If the equity of a
firm decreases, the asset volatility (asset risk) should also decreases. When the
equity-asset ratio decreases 1%, then the asset risk decreases £% for controlling
the value of PD. The risk managers can use this formula to effectively undertake
the risk management of investment portfolio for a firm.

We illustrate a simple example to show the application of our model. In
financial markets, there are many credit rating companies, such as Moody’s
and S&P, that justify a firm’s PD by giving it a specific credit grade (i.e., the
default’s transition probability matrix). Table 2 shows the statistic summary of
PD from 1981 to 2014, yielded 34 sample number, in seven credit ranks (i.e.,
ranks AAA, AA, A, BBB, BB, B, and CCC) for global corporations. These data
is published by S&P Rating Corporation in 2016. According to Table 2, the
average PDs for seven ranks (AAA, AA, A, BBB, BB, B, and CCC) are 0%,
0.0162%, 0.0624%, 0.2221%, 0.9535%, 4.5147%, and 23.6356% during the
sample periods, respectively. Accordingly, the average PD is usually less than 1%
for investment-grade firms (i.e., those with a credit rating higher than BBB). The
maximum PD is only 1.02 (rank BBB) for investment-grade firms. In addition,
even the PD for rank BB is also less than 1%. Thus our formula can be easily
used to analyze the PD.

We also adopt the annual default rates reported from TCRI, which created

by TEJ, to conduct the numerical analyses. TCRI comprises nine rating grades

Data source is from the 2014 Ratings Direct Report of S&P’s Global Fixed Income
Research and S&P’s CreditPro”.

o 17 o
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Table 2 Summary Statistics for the Seven Credit Ranks of Global Corporate
Annual Default Rates Using S&P Data

Annual default rate

Statistics AAA AA A BBB BB B CCC
Mean 0.0000 0.0162 0.0624 0.2221 0.9535 45147  23.6356
SD 0.0000 0.0695 0.1059 0.2591 1.0122 3.3119 11.8246
Min 0.00 0.00 0.00 0.00 0.00 0.25 0.00
Max 0.00 0.38 0.39 1.02 4.22 13.84 49.46

The global corporate annual default rates are reported by S&P’s 2014 Ratings Direct Report. Our sample
period from 1981 to 2014, yielded 34 sample number. The unit is percent. The symbols “Mean,” “SD,”
“Min,” and “Max” represent the average value, the standard deviation, the minimum value, and the
maximum value for the PD of each credit rank, respectively.

except default (D) including: Grades 1-4 (low risk), Grades 5, 6 (middle risk),
and Grades 7-9 (high risk). Table 3 shows the statistic summary of PD from
1999 to 2018, yielded 20 sample number, in nine credit ranks (i.e., ranks 1-9)
for Taiwanese corporations. Because the PDs are zero for ranks 1-3, we only use
the data in ranks 4-9 to perform the numerical analyses. The average PDs are
0.18%, 0.06%, 0.35%, 2.41%, 4.48%, and 11.21% for ranks 4-9, respectively.
To be mentioned, the average PD on credit rank 4 is greater than that on credit
rank 5 in the sample.

Given the above average PDs, it can find the corresponding values for a;
and b, in Table 1. As using the S&P data, we conduct the following discussions,
a,, = 0.2024 and b,, = 0.5573 are used to analyze the credit ranks AAA, AA, A,
BBB, and BB; the estimated value a,, = 0.2401 and b,, = 0.5870 in the range 10
are used to analyze the credit rank B; and the estimated value a, = 0.3724 and
bs = 0.8816 in the range 6 are used to analyze the credit rank CCC. When using
the TCRI data, a,, and b,, are used to analyze the credit ranks 1-6; the estimated

value a,, and b,, in the range 10 are used to analyze the credit ranks 7 and §;

¢ 18 o
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Table 3 Summary Statistics of Corporate Annual Default Rates for the Nine
Credit Ranks Using TCRI Data

Annual default rate

Statistics 1-3 4 5 6 7 8 9
Mean 0.0000 0.1830 0.0560 0.3480 2.4095 4.4805 11.2060
SD 0.0000 0.3719 0.2238 0.7197 2.7327 3.3540 8.3104
Min 0.00 0.00 0.00 0.00 1.51 341 9.28
Max 0.00 1.00 1.00 3.00 9.00 11.00 32.00

The corporate annual default rates are reported by TCRI. Our sample period from 1999 to 2018, yielded 20
sample number. The unit is percent. The symbols “Mean,” “SD,” “Min,” and “Max” represent the average
value, the standard deviation, the minimum value, and the maximum value for the PD of each credit rank,
respectively.

and the estimated value ag = 0.3222 and by = 0.7147 in the range 8 are used to
analyze the credit rank 9.

For comparison purposes, we show the estimates of PD from our formula
and the formulas provided by the following two studies: Abderrahmane
and Kamel (2016), and Edous and Eidous (2018). As shown in Appendix,
Abderrahmane and Kamel (2016) had provided the following two approximate

formulas:

0.39894¢ 078
x+0797586,0_4446X,f0r05x§5, and (14)

22
N(X):;(1+/:),fOYOSXS5- (15)

Moreover, in Edous and Eidous (2018), the approximate formula is:

Nx)=1-

NG) = 0.5(1 ++ 1 = @000y (16)

e 19 o



HIE B EIEE ST 13BN« 20204E12

Journal of Futures and Options

For simplicity, here we define the formulas in Equations (14)—(16) as models 1-3,
respectively. Also, our formula is defined as model 4.

In the estimates of PD, we firstly calculate the DD values by Equation
(6) based on the actual average PDs reported by the credit rating company.
After obtaining the DD values, we put them into models 14 for obtaining the
estimates of PD. Finally, we calculate the root mean squared error (RMSE)
between the actual average PDs and the estimated PDs for each model. The
results are shown in Table 4. As shown in Table 4, when using the S&P data,
the values of RMSE are 0.0170%, 0.1578%, 0.0080%, and 0.0089% for models
1-4 respectively. The RMSE is the smallest for model 3, the formula supported
by Edous and Eidous (2018). In addition, the RMSE in our formula is better
than the two formulas (i.e., models 1 and 2) shown in Abderrahmane and Kamel
(2016). Table 4 also shows the results from these four models when using the
TCRI data. The values of RMSE are 0.0161%, 0.2061%, 0.0169%, and 0.0085%
for models 1-4, respectively. The RMSEs of our model is the smallest among
four models. Accordingly, on the estimating accuracy of PD, our formula is
better than that supported by Abderrahmane and Kamel (2016), and is not worse
compared with the formula supported by Edous and Eidous (2018).

Table 5 shows the calculated value of £ given the average PD in each rank
using S&P data. Because the PD is zero for the rank AAA, we cannot analyze
the relationship between 1 and o,. We thus analyze the relationship for all ranks
except rank AAA. The calculated values of the slope (§) are 0.2796, 0.3105,
0.3514, 0.4271, 0.5912, and 1.3924 for the credit ranks AA, A, BBB, BB, B, and
CCC. Using these values, we show the relationship between 1 and 6, in Figure 2.
Figure 2 tells us that there are linear relationships between n and o, in all credit
ranks. The slope for the credit rank CCC of the firms is the highest among all
credit ranks. It implies, given the certain PD, the increase in 1 for the credit rank

CCC of the firms has the largest influence on their asset volatility.

e 20 o
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Table 4 The Comparisons for the Estimates of PD under the Different
Approximate Formulas of Normal CDF

Credit ranks Mean of PD Model 1 Model 2 Model 3 Model 4
Using S&P data
AA 0.0162 0.0150 0.0067 0.0155 0.0151
A 0.0624 0.0588 0.0329 0.0599 0.0609
BBB 0.2221 0.2132 0.1448 0.2161 0.2225
BB 0.9535 0.9329 0.7620 0.9451 0.9470
B 4.5147 4.4907 4.2007 4.5312 4.4944
CCC 23.6356 23.6608 23.5508 23.6335 23.6390
RMSE 0.0170 0.1578 0.0080 0.0089
Using TCRI data
4 0.1800 0.1723 0.1135 0.1747 0.1799
5 0.0600 0.0565 0.0315 0.0576 0.0585
6 0.3500 0.3381 0.2444 0.3425 0.3516
7 2.4100 2.3830 2.1290 2.4108 2.4185
8 4.4800 4.4559 4.1661 4.4962 4.4610
9 11.2100 11.2149 10.9630 11.2469 11.2100
RMSE 0.0161 0.2061 0.0169 0.0085

The unit is percent in this table. “RMSE” is the root mean of squared error. Models 1 and 2 are the
0.39894¢ 57

0797587 (o mode

formulas shown in Abderrahmane and Kamel (2016). They are N(x) =1 —
1 . . .
1 and N(x) = > (1+41- e’%*'z) for model 2. Model 3 is the formula shown in Edous and Eidous (2018).

That 2is N(x)=0.5(1 ++4) | — ¢®64702197) Model 4 is the formula supported by this study. It is N(x) = 1 —
ae”, as shown in Equation (2).
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Table 5 Estimates of the Parameters and Influence of Parameters on PD
Given Default Rate for Each Credit Rank Using S&P Data

Credit rank
Parameter AA A BBB BB B CCC
& 0.2796 0.3105 0.3514 0.4271 0.5912 1.3924
G4ln=04 0.1118 0.1242 0.1406 0.1708 0.2365 0.5570
%’M:M -0.0058 -0.0180 -0.0501 -0.1457 -0.3872 -0.5374
0
ﬁhzm 0.0207 0.0581 0.1426 0.3411 0.6549 0.3859
A

. . . . . . o)
& is the estimated slope for the relationship between n and o, as shown in Equation (12). 6,4 %In —0>

and 6717'“ _ o4 Tespectively mean the estimated asset volatility, the partial derivative of the PD with respect
O,y

to 1 and the partial derivative of the PD with respect to the asset volatility (c,) when 1 to be 40%.

Our results are useful for market participants because they can use these
results to estimate the risk when investing in the different credit rank of the
firms. For example, as shown in Table 5, given the PD for all credit ranks by
S&P credit rating, if initial equity-asset ratio is asked to be 40% (i.e., n = 0.4),
the estimated asset volatility should be 0.1118, 0.1242, 0.1406, 0.1708, 0.2365,
and 0.5570 for the credit ranks AA, A, BBB, BB, B, and CCC, respectively. It
shows that the asset volatility for the worst credit rank of the firms is the highest
among all credit ranks. The investors can calculate the portfolio frontier and
determine the optimal investment decision based on the estimated risks.

Moreover, if initial 1 is asked to be 40%, according to Equation (10), we

have 2]; equals to -0.0058, -0.0180, -0.0501, -0.1457, -0.3872, and -0.5374 for

the credit ranks AA, A, BBB, BB, B, and CCC, respectively. Thus, for example,
if a firm with n = 0.4 in the credit rank AA increases 1% of n, its PD will
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Figure 2 The Relationship between 1 and ¢, for Different Credit Ranks Using
S&P Data

This figure shows the relationship between 1 and o, for different credit rank. The average PD
of each rank is shown in Table 2.

decrease by 0.0058%. For the firm in the credit rank CCC, to improve its capital
structure (i.e., to increase 1% of its n) will greatly decrease its PD by 0.3872%.
It infers that if the firm in the better (worse) credit rank, the change of its capital

structure has small (great) influence on its PD.

According to Equation (11), we have 865 equals to 0.0207, 0.0581, 0.1426,
A

0.3411, 0.6549, and 0.3859 for the ranks AA, A, BBB, BB, B, and CCC, respectively.
Thus, for example, in rank AA, if a firm with n = 0.4 increases 1% of its asset
risk, then its PD raises by 0.0207%. To be mentioned, the largest value is found
in rank B. It implies that an increase in the asset risk has the largest influence

e 23 o



HIE B EIEE ST 13BN« 20204E12

Journal of Futures and Options

on the PD of the credit rank B of the firm. In view of the above discussions,
the influence of 6, on PD is larger than the influence of n on PD for all ranks,
except rank CCC.

Op op

o> M4 5,
average PD in each rank using TCRI data. The calculated values of the slope (&)
are 0.3441, 0.3076, 0.3703, 0.5058, 0.5898, and 0.8226 for the credit ranks 4-9,

respectively. Figure 3 also tells us that there are linear relationships between 1

Table 6 shows the calculated values of &, o, given the

and o, in all credit ranks. Moreover, the slope for the worst credit rank of the
firms is the highest among all credit ranks. Thus, it implies a raise in i for the
credit rank 9 of the firms has the largest impact on their asset volatility. To be
mentioned, the slope for the credit rank 4 is the higher than that for the credit
rank 5 since the average PD for credit rank 4 is greater than that for credit rank
5 in the sample.

If the initial equity-asset ratio is asked to be 40% (i.e., n = 0.4), the estimated
o, should be 0.1376, 0.1230, 0.1481, 0.2023, 0.2359, 0.3290 for the credit
ranks 4-9, respectively. It shows that ¢, for the credit rank 9 of the firms is the

highest among all credit ranks. The values of gﬁ equal to -0.0431, -0.0165,

-0.0707, -0.2823, -0.3859, and -0.5918 for the credit ranks 4-9, respectively.
This result tells us that if the firm in the better (worse) credit rank, the change of

its capital structure has little (large) influence on its PD. Moreover, the values of

685 equal to 0.1251, 0.0536, 0.1909, 0.5581, 0.6543, and 0.7194 for the credit
A

ranks 4-9, respectively. Accordingly, we can infer that the influences of 6, on
PD are larger than the influences of  on PD for all ranks. Figure 3 also shows
the linear relationships between 1 and o, in all credit ranks. Our above results
reveal that the findings are similar no matter using the S&P data or using TCRI

data to conduct the numerical analyses.
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Table 6 Estimates of the Parameters and Influence of Parameters on PD
Given Default Rate for Each Credit Rank Using TCRI Data

Credit rank
Parameter 4 5 6 7 8 9
& 0.3441 0.3076 0.3703 0.5058 0.5898 0.8226
Oln=04 0.1376 0.1230 0.1481 0.2023 0.2359 0.3290
g—ﬁh o4 -0.0431 -0.0165 -0.0707 -0.2823 -0.3859 -0.5918
15
a?phjw 0.1251 0.0536 0.1909 0.5581 0.6543 0.7194
A

op

& is the estimated slope for the relationship between n and 6, as shown in Equation (12). 6,,- o4, a'”:“’

and 67}7‘“ _o4» Tespectively mean the estimated asset volatility, the partial derivative of the PD with respect
Oy

to 1 and the partial derivative of the PD with respect to the asset volatility (c,) when 1 to be 40%.

IV. The Analyses of PD When the Calculation of PD by
Using the Merton’s Model

The first methods proposed for calculating PD utilized a structural-form
approach (Merton, 1974; Black and Cox, 1976; Leland, 1994). Under the
assumptions that the debt is growth with riskless interest rate and the behavior
of asset return is constructed under the risk neutral measure, PD in Merton (1974)

is usually denoted as the follows:

p=N(d,), (17)
o 1.,
n BO) 2 o, T

where p is the PD and d, = . If the firm is still active, we

on T

usually have d, > 0. B(0) is the debt value at the initial time; and T is the
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Figure 3 The Relationship between n and o, for Different Credit Ranks Using
TCRI Data

This figure shows the relationship between n and o, for different credit rank. The average PD
of each rank is shown in Table 4.

auditing time, the point at which one can judge whether or not the firm is
bankrupt; 7= 1 year is the specification generally used in traditional studies.

According to Equations (1) and (4), we have:

p= a,-e’b"d% and d, = b,'(Ing, — Inp) ford, € N'(C)). (18)

Using these formulas, one can deduce the relationship between d, and p, because
a; and b; are known parameters. For example, if we let p < 5%, one can derive

the following formula to determine the relationship between d, and p.
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d,=~/-2.4299 — 1.7036Inp . (19)
— . . . 10 .
If p = p, the relationship between the asset/debt ratio B(0) and asset risk
oy T is:
: 0) .2
JT +EY = +
(o T +E&) =2In B(0) E”. (20)

This formula can be used to investigate the relationship between a firm’s capital
requirement and investment risk.

We also can derive the partial derivative of p with respect to d, as follows:

D _ 4ot (2bdy) = -2p3 bIna, — Inp). @1)

od,

p
> od,
p is negative. Furthermore, we have

In other words < 0, which means that the relationship between d, and

od, _ 1
HO)  VONT @2)
od, _ 1
2B(0) = B(O)GA\/? <0, and (23)
_10)
od, o B(0) i
NT) T + ) <0. (24)

Thus, by using Equations (21)—(24), one can easily determine the influence

o 27 o



HIE B EIEE ST 13BN« 20204E12

Journal of Futures and Options

of ¥(0), B(0), and o/ 7' on default probability p based on the results from the

following:

op _ op od, _ 2p\b(lna,— Inp)

IO od 0 MOpNT O (25)
op _ op od, _ 2pyb(ina,~Inp)
oB(0) od, 6B(0) B0 T >0, and (26)
1 VO

o _dp 0d  _ - B(O) 1
T e ey = (blng i) t]z0 @)

In other words, if the initial asset value increases one unit, then the PD decreases by

2py b(Ina; — Inp)

the amount . On contrast, if the initial debt value and the asset
V(O)GA\/i

2p\ b(Ina, — Inp)
B (O)GA\/7

volatility increase one unit, then the PDs increase by the amounts
O

AT 2 , respectively.

and 2p b(Ing; — Inp)

For the applications of KMV model, Crosbie and Bohn (2003) also
supported another expression for DD by using Merton’s theory. However, they
assumed that the debt has no growth rate and the behavior of asset return is
constructed under the Physical measure. Accordingly, the distance to default is

expressed as follows (Crosbie and Bohn, 2003):
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In /(0) -l—pT—i °T
DD = B0 2 (28)
on T ’
where p is the expected asset growth rate. Thus, we have:
"0)

caop (Mo M1 09

Ao T) o’ T 2 '

Based on Equation (11), we have:
1(0)

In +ul

6 =2p\ b(Ing, — Inp) L + % > 0. (30)

Compared Equation (27) with Equation (30), the difference between

KMV’s model and Merton’s model is —- 2 . The reason for this difference mainly
A
comes from the different assumptions on the debt’s growth rate and the behavior

of asset return.

V. Conclusions

In this study, we have presented a formula for easily calculating the CDF
of a normal distribution. Our simple formula not only improves the efficiency
of calculation, but it is also easy to apply in practice. Because the results from
applying our formula reveal that the error of estimate for the tail probability
is quite small, we decided to further apply it to investigate important financial

issues associated with this tail probability, namely, PD.

e 29 o



HIE B EIEE ST 13BN« 20204E12

Journal of Futures and Options

Our formula is simpler on the estimating PD and has a better applicability
in practice for analyzing the PD compared with the formula shown in Edous
and Eidous (2018). According to our numerical example using S&P data, we
summary the following findings: (1) given the certain PD, the increase in 1
for the credit rank CCC of the firms has the largest influence on their asset
volatility; (2) an increase on debt of asset (or asset volatility) induces a raise in
the PD for a firm; and if the firm in the better (worse) credit rank, the change of
its capital structure has small (great) influence on its PD; and (3) the influence
of the asset risk on PD is larger than the influence of the equity-asset ratio on
PD for all ranks. The inferences are almost the same when using the TCRI data
to conduct the numerical analyses.

The normal CDF is commonly used in analyses prescribed by many other
financial theories, such as value-at-risk (VaR) and in formulas for determining
pricing options. Our formula can significantly increase calculation speed in the
more sophisticated investment analyses. Moreover, market participants can use it
to investigate how the relevant variables influence PD. Thus, our formula should
not only improve the management of the various risks of investment portfolios
in response to changing economic conditions, but also can be profitably used in
future studies to simplify the application of financial formulas that involve the
normal CDF.
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Appendix. The Approximate Formulas of the Normal CDF

Table A1 Summary the Approximate Formula of /V(x)

Source Approximate formula for N(x)

N 1 1 2+ 1.2 §
orton (1989) N(x);?exp(‘%)a()fxgz'%

Johnson, Kotzand ~ N(x) = 1 = 0.5(a, + axx + a:x” + ax’ + apx’ + agx’) ™,
Balakrishnan (1994) where a, = 0.999998582, a, = 0.487385796, a, = 0.02109811045,
a, =0.003372948927, a; =-0.00005172897742, a, = 0.0000856957942.

1 =
Nx)=1- ﬁew'sxz*&% 2), forx>5.5.
exp(1.5976x(1 + 0.04417x%))
1 +exp(1.5976x(1 +0.04417x%))

(83x + 351 )x + 562

703
T T 165

2
Bagby (1995) Nx) =05 +0.5 (1 - 3'—0(7exp (%) + 16exp(-(2-2))

Nx) =

N(x)=1-0.5exp

2

+ (7 + TL; )exp(xz)))o's, for x> 0.

Waissi and Rossin NG 1 g8
(1996) O T exp(Va (B + e o S
where B, =-0.0004406, B, =0.0418198, B, =0.9.
Bryc (2002) Ny =e ( X ) . x+3.333
x)=zexp|-— .
P\™27) 7 2 +7.320+ 6.666
Chiani et al. (2003) N 2(0,- 6, ) 1 -
< b — i i-1 — —
erfe(\x) < ; ae’™, where a; . , b, Sin’0,” and 6, N
1 2 1 37
For N=2, erfc(\[x) = ?e"' + ¢ >
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Source Approximate formula for N(x)
Marsaglia (2004) N S Xy x
Nx)=0.5+Q2n) “e x+3 +3><5+3x5x7+""
for x> 0.
Aludaat and Alodat / : /%‘2
~ + —e"
(2008) Nx)=05+05V1—e , for x> 0.
Bowling et al. Ne) = 1
(2009) N ¥ exp(-0.07056x — 1.5976x)
Olabiyi and N
Annamalai erfc(\/;) = z ake'kbx, forN=1, a, = 0.4803, b=1.1232.
k=1

(2012a, 2012b)

Soranzo and Epure 1 1 17 + 2
(2012a) Ne)=—+—- |1 —exp (—xzix) , for x> 0.

2 26.694 + 2x°
Soranzo and Epure 11 -1.2735457x* — 0.0743968x"
N = — +— _ . . , forx>0.
(2012b) =t 1 eXp( 2+ 0.148093 1% — 0.000258x" ) *
Choudhury (2014) 1 =
e
Nx)=1- , for x> 0.

+
V2 0.226+0.64x +0.33vxF + 3

—41x/10
Soranzo and Epure NG = 2,221 41 forx>0.

(2014)
Winitzki (2014) 1 1 v (4/m)+ 0 147()62/2)

Nx)=—+— — - - , forx>0.

W=7t5 /1 exP( 2 1+0.1470202) )
Abderrahmaneand - 0.39804¢
Kamel (2016) )= 1= 079758 0% » for 0 =x <5, an
1 22

N(x)2<1+ l-e" ),forOSxSS.

Edous and Eidous 0,647 2
=0. + _ - (0.647-0.021x)x )

(2018) N(x) 05(1 1-e

erfe(x) = % Lwe"zdt, N(x)= %erfc(%), and N(x) is the CDF of normal distribution.
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