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ABSTRACT

This paper investigates to predict the non-measurable displacement and forces of the structural system in time histories
from accelerometer simulated records. It deals specifically with the situation where the external forces are unknown. The
accelerometer and beam (truss) were modeled as a structural svstem in order to get a system governing equation. The

matrix representation of governing equation of the structural system was constructed by the finite element method. Then

the matrix representation was transformed to state equation and measurement equation of the Kalman filter by using the

average acceleration method. The Kalman filter was adopted to predict, innovate and filter for the estimable displacement

without external forces. Then using the recursive least square algorithm to decrease error between measurement and
estimable of the external forces, therefore this paper finally got the estimable external forces. The accuracy of the cumrent
method is demonstrated by the numerical simulations for the external forces applied at the specific location of the beam

(truss) in time histories.

INTRODUCTION

In the measurement of the actual phenomena, the ob-
served data often suffer from losses or distortions due to
the limited dynamic range of the measurement instruments.
The fluctuation pattern of a non-Gaussian type is compli-
cated because of physical, environmental, and psycholo-
gical factors. In these measurements, the fluctuations of a
random signal are nevitably contaminated by the external
noise of the arbitrary distribution type. Furthermore, since
all measuring equipments have a limited dynamic range,
therefore the designer does his best to eliminate all the
obvious noise-producing mechanisms. The Kalman filter
was proposed in 1960[1], and has evoked much interest
among engineers and scientists. The Kalman filtering te-
chnique with its recursive structure has been applied to
the processing noisy measurement problems. For handling
the process noisy problems, Efe et al.[2] used two different
adaptive Kalman filters design to track targets expected

to perform varying turn maneuvers.
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It is a very important task in structural design for deter-
mination of excitation forces, but the task is not always
practicable to directly measure the excitation forces, for
example excitations of wind, seismic, explosion and
shock. In particular, for impulsive or impact resistance
and reliability of structural material in the modern day,
they need acute analytical studies, because of their re-
markable susceptibility to impact damage, and sometimes
direct measurements of the impulsive loads are not fea-
sible. So an indirect estimation for the excitation forces is
frequently employed. For the input forces estimation, it is
the process of determining the applied loadings from mea-
surements of the system responses. Some techniques have
handled the inverse problem during force estimation. Lee
and Park [3] adopted the characteristics of the force deter-
mination error in structural dynamic systems. They derive
the major factors affecting the force determination error
and propose a regularization procedure to reduce the error.

For biomechanical studies of locomotion, Bogert and Nigg
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[4] proposed a method for inverse dynamic analysis
using accelerometers to replace kinematics of the body
segments with measurement of external forces to obtain
the resultant force and moment. Tuan et al. [5,6] proposed
an on-line input estimation method includes Kalman filter
with a least square algorithm to estimate heat flux from
measured temperature. They applied the algorithm to one-
dimensional and two-dimensional heat conduction pro-
blems. However, they used finite difference method to set
the state equation of Kalman filter. Furthermore, Ma et
al. used Finite Element Method (FEM) to construct the
system state equations of the beam structures, and then used
the on-line input estimation method includes Kalman filter
with a least square algorithm to estimate the unknown exci-
tation forces from beam vibration modes[7,8]. Deng et
al.[9] used FEM to construct the state equation and mea-
surement equation of the Kalman filter for a cantilever
beam with a uniform load. However, their researches
didn’t include the measurement sensors, and assumed the
displacement is known.

For the measurement sensors, the accelerometers are
commonly used in the measurement of engineering fields.
Owing to accelerometers advantages, i.e. high accuracy,
wide-band frequency and dynamic ranges, small size,
lightweight, and ease of installation, the accelerometers
are the preferred motion sensors for most shock and vi-
brations monitoring applications[10]. Link and Martens
[11] design a one-degree-of-freedom system model for an
accelerometer. This model set, in conjunction with the deter-
mination of the accelerometer input signal by laser inter-
ferometer and appropriate signal processing methods,
allows computing the input-output behavior of accelero-
meters using known identification algorithms. The piezo-
electric accelerometers were modeled as a one-degree-of-
freedom mass-damper-spring system, too. The principle

and design of the sensor have been presented for its ro-

Measurement
system

bustness and low cost[12]. Even some scholars utilized
Neural Networks as the estimation approach for the es-
timation and explicit formulation of available rotation
capacity of wide flange beams[13].

Based on the above developments, recent methods,
which describe the de-convolution of the unknown sys-
tem (instrument), apply the total least squares (TLS) me-
thod[14]. In addition, in experiments, Da et al.[15] de-
velop an assessment methodology based on vibrations
tests and finite element analysis to predict the fatigue life
of electronic components under random vibration loading.
This research simulates an accelerometer to measure the
acceleration of beam to estimate the unknown external
forces. The measured accelerometer input signals are si-
mulated from the forward solution with statistical noises.
The accelerometer was modeled as a one-degree-of- free-
dom mass-damper-spring system. This system then has
been added to the beam structural system as one integrated
system. We use Kalman filter with least square algorithm
to estimate the external forces of this integrated system
from simulated measuring acceleration of the accelero-
meter directly.

In this section, the FEM is applied to derive a mass
matrix, stiffness matrix and external forces vector of the
beam structure. Then we construct the system’s state
equation of the Kalman filter, and establish an estimation
scheme to determine the unknown excitation force from
disturbing signals of the input-output data from an ace-
lerometer from Fig. 1(a).

The accelerometer is considered to be a linear dynamic
system and can be described by a one-degree-of-freedom
piezoelectric system. From Fig. 1(b), the piezoelectric
element is modeled by a spring with a stiffness constant &
and viscous damping c. The absolute position of the ace-
lerometer is d,(t) and its acceleration is y(f) = d’dy(t)/d .
Then the absolute position of the mass M is y,,(f) and the
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(a) Accelerometer on cantilever beam
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Concentrated load F{(x,f) on a cantilever beam with a measurement system
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relative position between the mass and the body, #7), 1s
given by [12]
Ht)= y,, (D)~ dy (D) QY
Newton’s second law applied to the mass m for little
variations and projected to the motion axis gives the

following equation:

dty dar
m—t = —c—— k(¢ 2
= 2 (0 @
Then, we replace y,, with equation (1), and it can get
d*d, d*r dr
my(ty=m =—(m +oc——kr(D)y (3
y(1) " ( e — k@) G

To integrate an accelerometer with the cantilever
beam structural system, we want to predict the unknown
external force.

1. State equations of the system

From Fig. 1, the lateral vibration of the Euler-Bernoulli

beam structure with an accelerometer is governed by the

equation
_82); 84)} %
[)?"r EIy: F(a,t)—m?é'(x—b)
—c%é(x—b)—kré(x—b) (4)

where v(x,f) 1s the transverse displacement of the beam,
and x denotes the spatial axis along the beam axis and £ is
time. The mass density per length p is a constant, ET 1s
the beam rigidity, and F(x.f) is the externally applied
force [16]. Here @ and b are the location of the force and
accelerometer on this beam respectively. &) is the Dirac
delta function.

We apply the Galerkin’s method to Equation (4) to
develop the finite element formulation [12] and the corres-
ponding matrix equations. Therefore, the matrix equation

for this dynamic beam can be given by

pelfit [K]{d}:{F(a,r)m%é‘(xb)

- c%é‘(xfb)f krd(x —b) (5)
where M 1s element nxn mass matrix, K denotes element
nxn stiffness matrix, and F represents the external force
of the nx1 load vector.

Assuming the accelerometer output data d, =pr(?),
where the notation p =xy and x is the preamplifier gain
factor, y denotes a piezoelectric constant [11]. Here d, 1s
the displacement at location b on this beam. So we put
the output data in Equation (5), then it reduces to

1} (K Tt} = (F (e t) - %(mc'l;b +ed, +hd, )} (6)

Equation (6) can be rearranged to the following equation
by using proportional damping matrix [C] = e[M]+ £K],
where a and [ are constants.

T j Tl [T a0 ™
in Eq.(7), whenx =5,

my=m,+Lm, o =c, +Lecky =k, +=k

f

where mj, ¢}, and &7, are the matrix elements of [M], [C]
and [K]" on the location x=b. When the nitial condition
do, dp and d is given, the Equation (7) may conveniently
be written in matrix form by using the average accelera-
tion method [17],

K C M J 0 0 0 J 5
At -I+1 At -I i
0 1 —Shfdu=0 1 ZRjd 0 (8
A2 | di A |14 0
I 0 = I Ay ==
4 4
or
Oy Dy =0 D+ B ©

where Dﬁl:[c"iﬂ c;’ﬁl dq]"
By transferring @, to the right side of the equation,
this recursion relation can then be written as
D, =AD +TF (10)
then T=d;', 4=T0,.
If the associate process noises are considered; the
state equations can be transformed to the measurement

equation as following.

D, = AD, +T[E +w,] (11)

Z, = HD, +v, (12)
where w; is the statistical representation the input dis-
turbance or process noises which is assumed to be zero
mean and white with variance E{ a)jr} =08 Du i
the state vector, A represents the state transition matrix, I’
denotes the mput matrix. 7, represents the observation
vector and H 1s the measurement matrix. The variance of
v is the measurement noise vector. This “v” is assumed to

be zero mean and white variance E{v,v,"} =R .
2. Recursive input estimation approach

In the previous section, we derived the discrete-time
state equations of the mass-damping-stiffness structures
system, which 1s subjected to impulsive loads. However,
nput force estimation is a process of determiming the
applied loadings from an accelerometer of the system

responses. The current input estimation method consists
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of two parts: the Kalman filter and a recursive least squares
algorithm. The Kalman filter is used to generate the resi-
dual innovation sequence by observation data. Then a re-
cursive least-squares algorithm computes the onset time
history of the excitation forces by utilizing the residual
innovation sequence. The detailed derivation of this scheme
can be found in the content of Tuan et al [5]. The associ-
ation between the mathematical equations is shown in
Fig 2.

The Kalman filter equations, without external forces,

are given by [18]

D(i+1/i)= 4-D(i/i) (13)
Pli+1/i)= AP(i/i)A" +TQT" (14)
SG+1)=HPG+1/i) H +R (15)
K G+1)=Pi+1/i)H S (i+1) (16)
Pli+1/iv)=[1-K,(i+VH]PG+1/1) (17
Zi+1)= z{(i+1)- HD(i +1/i) (18)
DiE+1/i+)=D{+1/i+ K,G+1)ZGE+1) (19

where P denotes the filter’s error covariance matrix, SG+1)
represents the innovation covariance, and K, 1s the Kalman
gain. From [5], the equations for a recursive least-squares

algorithm are

Kalman Filter Loop
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Fig. 2 Estimation flowchart

B(i+1)=H|[4M (i)+I]T (20)

MG +1)=[1 - K, i+ 1H [4ad, )+ 1] 1)
I BB (i+1)

Kl )= e G esee) 2

B i+1)=[1-K,{i+ 1B+ 1) B, G) (23)

70| e
where B, (i+1) and M (i+1) are the sensitivity matrices.
Z(i+1) denotes the innovation, Ky(i+1) describes the
correction gain for the updating F (i+1), Py(it1) repre-

Bli+1)= P K, (1)1 [Z6-1)-B,(i+1)

sents the error covariance of the estimated input vector,
and Fli+1

parameter y, 1.e., fading memory factor, is employed in

) is the estimated input vector. The scalar

the current algorithm to compromise between the fast

adaptive capability and the loss of estimate accuracy. In

this algorithm, 0 < ¥ < 1 is used.

The procedures are to estimate the unknown input
forces by using the inverse method. They are sum-
marized as follows.

(1). The governing equation of motion for the beam
structure with accelerometer was discritized to the
matrix form by using finite element formulation.

(2). The matrix form of governing equation of motion was
transformed to the state-space equation by average
acceleration method.

(3). We use the Kalman filter equations that are Eq. (13)-
(19), to predict node displacement, and to obtain the
innovation covariance § (i+1), innovation Z(i+1).
and Kalman gain K, (7+1).

(4). We also use the recursive least-squares algorithm
that 1s Equation (20)-(24), to estimate the unknown
external forces F(i+1).

NUMERICAL SIMULATIONS AND RESULTS

In order to demonstrate the accuracy and efficiency
of the current method in estimating unknown external

forces, numerical simulation of a cantilever beam, a sim-

Accelerometer
I 4m I 4m I 4m I

Fig. 3 Bridge truss structure
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Table 1 The material specification and dimensions of beam

Beam variables

Density (kg/m®) 7860
Elastic modulus (GPa) 200
Length (m) 1
Cross-sectional area (m?) 0.0004
Moment of inertia (m*) 0.33x10°

Table 2 The material specification and dimensions of
bridge truss

Truss variables

Density (kg/m®) 7860

Elastic modulus (GPa) 200

Cross-sectional area (m?) 0.0005

Table 3 The material data of accelerometer

Accelerometer variables
Mass (kg) 0.2
Natural frequency (rad/s) 24500
Damping 0.085

Table 4 Comparison of FEM and analytic functional

results of the natural frequencies

Mode  FEM (rads™  Exactsolution (rad ')  Error

1 203 169.5 1.7543 %

2 12722 1260.2 0.9522 %

ply supported beam and a bridge truss (as Fig. 3) are in-
vestigated. The matenal data and dimensions of beam, truss

and accelerometer are given in Table 1, Table 2 and Table
3. The initial conditions for the input estimator are generally
givenby D5(0/0)=[00000[ , P(0/0) = diag[10°], P,(0/0) =
diag[10%], and #{0)= [00000]". Af(0) 1s set to be a zero
matrix for the recursive least-squares algorithm. The esti-
mators are nitialized with P{0/0) and P,(0/0) as extremely
large numbers, thereby causing the estimator to “ignore”
the few initial estimates. In the estimation problem, the
process noise covariance matrix ¢ and the measurement
noise covariance matrix R of the input estimation algori-
thm are all unknown values. According to several simu-
lation tests, this paper chooses @ =10 and R = 10 as

our simulation parameters. These selections have the
effects of treating the imitial errors as very large and the
estimator will “ignore” the few estimations [7].

A comparison of the FEM and analytic functional
natural frequencies for free vibration of a uniform beam
is shown in Table 4.

There are six types in numerical simulation examples
that employed in this paper. Cantilever beam with (1) two-
rectangular force, (2) two-cosine synthetic force. Simply
supported beam with (3) two-rectangular force, and (4)
triangular force with rectangular force were simulated.
Bridge truss with (5) two-rectangular force, and (6) the
exponential decay multiplies a cosine-distributed load
were simulated. The simulated measurements of the beam
(truss) structure are loaded into the inverse estimation
algorithm, i.e., Equation (13)-(24), to identify the corres-
ponding external forces.

After trying different initial values for the notation p
in Eq. (6), we have found that p =8x107 is a good value
compared to the displacement of the forward solution. All
of these simulations were done on the MATLAB software
environment. From Fig. 4 to Fig. 9, part (a) shows the
exact input acceleration of an accelerometer by the forward
solution, part (b) depicts displacement of display from an
accelerometer and exact displacement at specific location
of the beam (truss) (i.e. a solid line indicates exact displace-
ment and a dotted line indicates measurement displace-
ment), and part (¢) presents the exact and estimated ex-
ternal forces.

1. Estimation of the cantilever beam with two-
rectangular shapes force

In the first numerical simulation example, the canti-
lever beam is subjected to a concentrated force that acting
on the point @ =L /4. An accelerometer was put on the
location b =L of this beam. The external force with

respect to time domain is introduced as below

Flx.t)= po f(1)S(x - a)

t 2t
— 7 7
H=0 Z<r<—
iG] 3 ;
b
f(t):pa Oiti? and T<I§[f

where t=kAt = k(t-£), and the final time # 1s given by
0.5 second, At=0.0005 second, and py=20N.

Fig. 4 depicts the corresponding time histories of the
displacement and estimation result. The result reveals a
very good estimating ability.
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Fig. 6 Time histories of the two-rectangular shapes force

2. Estimation of the cantilever beam with two-
cosine synthetic shapes force
In the third demonstration, two-cosine synthetic shapes
force with respect to time domain is assumed as

J®= p?”cos(m;zrﬁ p—;cos(Sizr), 0=t=t,

The simulation parameters are the same as the pre-
vious simulation examples. Fig. 5 shows the estimation
results of a two-cosine synthetic shapes force in time
domain.

Next we considered the estimation of a concentrated
force that acted on L/4 of a simply supported beam and
an accelerometer that acted on £/2 of a simply supported
beam. In following numerical simulation example, the
gimulation parameters are the same as previous that.

3. Estimation of a simply supported beam with
two rectangular shapes force

The simply supported beam is subjected to a con-
centrated force that acting on the point a=L/4. An ace-
lerometer was put on the location b = L./2 of this beam.
The rectangular shapes force with respect to time domain
is introduced as below

Flx,t)=p, f) 8(x—a)

t 2t
_ £ £
H=0, —_— L E—
S 3 3
tf 2tf
SO =py Osts?,and Tdstf

Fig. 6 depicts the corresponding time histories of the
displacements and estimation results. Obviously the dis-
placement of a simply supported beam is smaller than that
of a cantilever beam. In Fig. 6(a) shows slight fluctuations
that are due to damping matrix in Eq. (7).

4. Estimation of a simply supported beam with
the triangular and rectangular shapes force

The shape of concentrated load is expressed as

t t
f)= —iﬁ{r—?f} 0<t<L

’ 3
t 2t

f=0, ?fsts—f
2y

SO =py. TSISIJ{

The calculated results indicate that the displacement

of a simply supported beam is same as the above section.

3. Estimation of the bridge truss with two-rectan-
gular force

A bridge truss is subjected to a concentrated force
F()y=p, fiH) acting on the node 5 and an accelerometer
putting on the node 4. The rectangular force with respect
to time domain is introduced as below
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where t=kAt=k(#,1 — 1), and the final time #,is given by
0.1s, At=0.0005 s, and py=200N.

Fig. 8 depicts the corresponding time histories of the
displacement and estimation result.

6. Estimation of the bridge truss with the exponent-
tial decay multiplies a cosine-distributed load

In this numerical simulation example is still a bridge
truss, the exponential decay multiplies a cosine-distributed
load is expressed as

SO = py exp(—251)cos(20m),

The simulation parameters are the same as the previous test

Oststf

case. Fig. 9 depicts the time history of the displacement
and estimation result of the exponential decay multiplies
a cosine-distributed load.
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Fig. @ The estimated input forces for the exponential
decay multiplies a cosine-distributed load

DISCUSSIONS
1. There are two parts included in the Kalman filter, pre-

diction and innovation. The Kalman filter predicts
the displacement of the beam (truss) where the ace-
lerometer located. Then Kalman filter can also inno-
vate the displacement by using the displacement mea-
sured from accelerometer.

2. The least-square algorithm is used to reduce the emror
between estimated extermnal forces and exact external
forces.

3. The advantage of present inverse method is to estimate
the displacement of any location on the different
beam and the external forces by just put an accelero-
meter on any location of the different beam.

4.  Obviously, the acceleration of specific point of the
beam (truss) will be influenced by different kind of
the extemal forces, and the acceleration will suddenty
be altered by the impulse force as showed in part (a)
of Fig. 4 to Fig. 9.

5. Part (b) of figures 4 to Fig. 7 shows the exact dis-
placement and estimated displacement of beam. The
error between these two displacements is about 1.2%,
which can apply to any kind of external forces.

6. As indicated in part (¢) of Figs. 4 to 9, the errors in
the initial estimation are large, but after a few seconds
iteration, the estimation converges to its correct values
rapidly. These results show that the proposed technique
can correct the error between the initial estimation
values and the exact values by increasing the value
of the error covariance matrix P(0/0) and P5(0/0).
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7. The application of the current inverse method facili-
tates estimating the external forces of the different
structure system in time domain. The estimation results
of the different external forces with respect to time
domain indicate that the current estimation algorithm
is capable of dealing with different beam (truss)

structural system in time domain.

CONCLUSIONS

This paper presents an on-line recursive inverse me-
thod to estimate the unknown external forces of cantilever
beam, simply supported beam and bridge truss from the
measured acceleration of an accelerometer. The input-
output behavior of accelerometer can be described as a
linear time-invariant system by a difference equation. Then
we use the FEM and average acceleration method to con-
struct the system state equation of the beam structure and
the accelerometer. This system state equation is then used
by Kalman filter with least-squares algorithm to estimate
the different distributed external forces of the beam (truss)
structural system. Numerical results confirm that the pro-
posed method can accurately estimate the different distri-
buted external forces even the measured displacements

noises were exist.
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