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Abstract

Sign languages are composed of hand and finger actions and are combinations of the flexion and extension of
fingers, wrist, forearm, and arm. Thus, an EMG-based hand action identification system is proposed in this study. The
purpose of this system is to identify a sufficient amount of basic hand actions in order to use this information to
recognize more complicated sign language in the future. This system uses active electrodes placed around the forearm
to collect EMG signals from muscle groups of the forearm. To avoid miss-identification of the action period due to
noise and artifacts in the EMG signals, in this study a multi-thresholds method is proposed. Features extracted from the
new EMG electrode system are inputted to a back-propagation ANN identification system for hand action
discrimination. Eleven subjects were recruited for this study. The results indicate that when six features from seven
EMGs were input into the ANN, the average discrimination rate was 93.1%. When one feature from each channel was
used, the discrimination rates ranged from 73.2% to 90.4%. On the other hand, when two features with the highest
discrimination rate in the previous results were selected, the average discriminative rate increased to 86.9% and 90.3%.
However, the current system cannot detect movements of the upper arm. Additionally, due to the large between-subject
variations, the system must go through the training sequence before every use. Nevertheless, the results indicate that,
with the ring electrode system and multi-thresholds method, the proposed system does provide high discriminative
ability for the actions of fingers, palm, wrist, and forearm.
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Introduction corresponding to that particular action. In most of these studies,

artificial neural networks (ANN) have been successfully used

. . . . . for hand action identification.

hearing impairments in Taiwan, most of whom communicate . . . -
Since, sign languages are composed of hand and finger

actions and are combinations of the flexion and extension of

fingers, wrist, forearm, and arm. Thus, an EMG-based hand

action identification system is proposed in this study. This

There are approximately sixty thousand persons with

with each other by means -of sign language. However, the
general public, who has never trained with sign language, is
unable to understand, so handwriting is generally used to

resolve this communication difficulty. However this is .
system uses active electrodes placed around the forearm to

collect EMG signals from muscle groups of the forearm. The
proposed electrode system is design to avoid the drawbacks of
sensitivity to electrode displacement in previous studies. On
the other hand, it has been demonstrated that the
discrimination rate is highly dependent on the signal
processing techniques that are used to extract features from the
EMG signal. Thus, a new signal processing method is
proposed to increase the reliability of feature extraction.
Additionally, features extracted from the new EMG electrode
system are inputted to a back-propagation ANN identification
system for hand action discrimination. The purpose of this

. . } . e . roposed system is to identify a sufficient amount of basic
and grasping or bending of the finger can be identified using prop . y . .y. . .
. . hand actions in order to use this information to recognize more
EMG signals from muscle groups that are not directly

o complicated sign language in the future.

inefficient and constricted by the circumstances. For example,
while standing or walking, it is not possible to write. Therefore,
if we could change sign languages into audible speech, that
would resolve this difficulty. On the other hand,
electromyography (EMG) patterns have previously been used
to identify hand actions. For example, EMG patterns from
amputees have been used in severa] studies to provide reliable
and accurate systems to control and assist prosthetic devices [1,
2]. In addition to prosthesis control, EMG has also been used
to identify the action of hands and legs during functional
electrical stimulation (FES) [3]. These studies demonstrate that
hand actions, such as extension of the forearm, hand opening
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signals and back propagation ANN for prosthesis control in
1993 [4], using absolute value and integration of EMG signals.
This system can identify six hand actions, including relaxation,
hand opening and closing, palmar flexion and dersiflexion,
wrist pronation and supination, with the highest recognition
rate of 95.5%. On the other hand, Fukuda et al used multiple
surface EMG electrodes and a neural network to construct a
robotic manipulator control system [5]. By additional on-line
training technique, a 100% recognition rate can be achieved
for six hand actions including extension, flexion, pronation,
supination, hand open and hand close. In 2000, Huang and his
collogues reported a digital signal processor based prosthesis
control system and compared the effect of combining different
EMG features on the recognition rate [6]. It was found that by
combining the integral of EMG (IEMG), waveform length
(WL), variance (VAR), zero crossing (ZC), Willison amplitude
(WAMP) and parameters of 4-th order autoregressive model,
after on-line training, an 87.5% recognition rate can be
achieved.

Results of these experiments indicate that most of the
forearm action can be identified by a system consists of
surface EMGs and a neural network. However, there are still
some drawbacks and shortcoming in these studies. First, all
these researches and most of other studies required EMG
electrodes to be placed on designated locations for signals
collection, which could not be easily done outside the
laboratory. Second, the discrimination rates can be achieved
only for hand actions involve large muscle groups, and no
study to identify different finger actions using surface EMG
electrodes placed on the forearm has been conducted. To
overcome these problems, a new electrode system is needed
that can be worn without concern for the exact position of each
electrode. Additionally, this electrode configuration should
permit acquiring EMG signals from all the muscle groups in
the forearm. Although EMG signals are know to be different in
morphology and amplitude when the electrode placements are
different, it is also known that the surface EMG is a
combination of action potential of motor units near the
electrode. In addition, numerical studies have been conducted
to resolve the source localization in surface EMG [7]. Thus, it
is assumed that with sufficient amount of surface EMG signal,
all the necessary information for discriminating hand actions is
contained within these EMG signals, and only the learning
ability of ANN is necessary to resolve it.

Method

Electrode system -

Active electrodes offer advantages such as reduced noise
and high signal to noise ratio over the traditional passive
electrode [8]. Most active electrodes provide strip, dot, or
concentrated circle for signal inputs and differential
amplification. The distant between two differential inputs
affects the sensitivity of the electrode, -and the longer the
distance the more sensitive the electrode is [9]. On the other
hand, the size of the electrode has an effect on the quality of
acquired signal. For a large electrode the summation effect of

individual motor unit is more apparent. Thus, a large active
electrode provides EMG signal with larger amplitude.
However, the drawback of a large electrode is that it is very
difficult to secure onto the surface.

To acquire EMG signals from subjects when they are
doing hand and finger actions, traditionally, multiple
electrodes need to be placed on all the corresponding muscle
groups. This process of placing electrodes is time-consuming
and requires detailed knowledge of human anatomy.
Additionally, some of the muscle group are closely together
that make the acquisition of EMG signal from a single muscle
group using surface electrodes almost impossible. To
overcome these problems, a system is proposed by making
active electrodes as small as possible and placing a large
amount of these electrodes on the forearm in order to acquire
all the EMG signals during hand actions. On the other hand, to
be feasible for use outside the laboratory, the electrode system
must be easy to apply. Thus, it is proposed to arrange multiple
active electrodes around the forearm in a ring faction.

A 2cm-by-lcm active electrode is designed with two
3mm metal strips fabricated at the two ends on one side of the
electrode. These two metal strips act as the two sensing
electrodes. Consequently, this active electrode provides
differential EMG signals with constant electrode distance. The
amplification circuit, fabricated on the other side of the
electrode, is composed of an instrumentation amplifier, a
differentiator and a Butterworth low pass filter. This active
electrode provides 68dB gain and 10 to 500Hz bandwidth.
Seven active electrodes are attached to a magic tape to form
the ring electrode system.

EMG signal processing

A total of 11 hand actions are defined and studied in this
study. Four of them are defined according to previous studies,
including fist flexion up and down, pronation and supination.
Seven are newly defined finger actions including extension of
the index finger, extension of index and middle fingers,
extension of thumb and little fingers, extension of thumb and
index fingers, extension of all fingers except the thumb and
extension of all five fingers. Based on the study of Huang et al,
six EMG features are extracted from the EMG signal including
IEMG, WL, VAR, slope sign change (SSC), ZC and WAMP.
All these features are selected for their ease -in c5mputation.
They are defined as:

N
IEMG =) |x;| ()
k=1
N
WL = 2|Axk| , where Ax, =x, —x;_ @)
k=1
VAR = —l—ixz 3)
N-1&7*

N
ZC = Y [sgn(-x;, X xp. Jand|x, — x| 0.02],
i=1

where sgn(X) = SRy
0, otherwise = .o
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Figure 1. Determination of start and ending times of hand action period. During the recognition period, EMG signals are normalized and
compared with corresponding thresholds. When two or more EMG signals exceed their corresponding threshold, it is marked as the
beginning of one action. After the beginning of action, when six or more EMG signals are below the corresponding threshold, it is
marked as the end of action.
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Figure 2. (a) The active electrode, (b) the ring electrode system and (c) a typical frequency response of an active electrode.

SsC =(xk —xk_l)x(xk —xk+l)20.03,f0r k=1..,N (5 In order to correctly recognize hand actions, it is
necessary to identify the beginning and end of action periods
from continuously recorded EMG signals. To avoid
miss-identification of the action period due to noise and
artifacts in the EMG signals, in this study a multi-thresholds

method is proposed. First, during the training period, while

N
waMP = £, = xen]),
i=1

where f. (x)

s

07

if S x>03

otherwise

(6)

subject is doing designated actions, threshold\s’", a‘nd‘,

normalization factors for each EMG channel arc‘ékstkablished ’
based on the absolute value of EMG signal. Then, during the
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Figure 3. EMG signals that were acquired using the ring electrode system. Where (1)-(11) represent hand action flexion down, extension of
thumb and little fingers, extension of index and middle fingers, extension of all five fingers, extension of thumb and index fingers,
extension of the index finger, extension of all fingers except the thumb, pronation, supination and flexion up, respectively.
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Figure 4. Typical results of multi-threshold method for (a) extension of the index finger, (b) extension of all fingers except theﬁthku‘ryﬁkb, (e
extension of all five fingers and (d) supination. In the figure, s and e represent start and ending times of each a¢tion’ pe:iod, :
respectively. : i '
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Table 1. Discrimination rate using six features from seven electrodes. Where (1)-(11) represent hand action flexion down, extension of thumb
and little fingers, extension of index and middle fingers, extension of all five fingers, extension of thumb and index fingers,
extension of the index finger, extension of all fingers except the thumb, pronation, supination and flexion up, respectively.

1 2 3 4 5 6

7 8 9 10 11 average

90% 92% 89% 85% 94%

97%

92% 99% 97% 90% 9% | 93.1%

Table 2. Discrimination rates using only one feature from each channel. Where (1)-(11) represent hand action flexion down, extension of
thumb and little fingers, extension of index and middle fingers, extension of all five fingers, extension of thumb and index fingers,
extension of the index finger, extension of all fingers except the thumb, pronation, supination and flexion up, respectively.

1 2 3 4 5 6 7 8 9 10 11 | average

IEMG | 84% | 87% | 75% | 82% | 82% | 93% | 91% | 84% | 95% | 76% | 80% | 84.5%
WAMP| 49% | 82% | 75% | 78% | 67% | 91% | 84% | 78% | 69% | 67% | 80% | 74.5%
SSC | 67% | 91% | 71% | 78% | 75% | 85% | 93% | 87% | 84% | 80% | 91% | 82.0%
VAR | 76% | 85% | 69% | 80% | 82% | 96% | 93% | 91% | 78% | 65% | 87% | 82.0%
WL | 82% | 98% | 89% | 85% | 91% | 98% | 96% | 82% | 91% | 82% | 100% | 90.4%
ZC | 58% | 71% | 65% | 71% | 64% | 85% | 98% | 67% | 78% | 64% | 84% | 73.2%

Table 3. Discrimination rates using (a) IEMG and WL, (b) ZC and WAMP. Where (1)-(11) represent hand action flexion down, extension of
thumb and little fingers, extension of index and middle fingers, extension of all five fingers, extension of thumb and index fingers,
extension of the index finger, extension of all fingers except the thumb, pronation, supination and flexion up, respectively.

1 2 3 4 5 6 7 8 9 10 11 | average
78% | 98% | 89% | 89% | 91% | 98% | 100% | 98% | 95% | 75% | 82% | 90.3%
b | 84% | 96% | 84% | 82% | 80% | 95% | 95% | 80% | 87% | 78% | 95% | 86.9%

recognition period, EMG signals from each channel are
normalized and continuously compared with corresponding
thresholds. When two or more EMG signals exceed their
corresponding thresholds, it is recognized as the beginning of
one action. After the beginning of an action, when six or more
EMG signals are determined to be below the corresponding
threshold, it is marked as the end of action (Figure 1).

Six features from seven EMG signals each are used to
classify 11 hand actions. Thus, an ANN with 42 input nodes
and 11 output nodes is instituted for this study. A 28-node
hidden layer is added to tighten the connection between the
input and output layers. However, the amount of computation
for this ANN may be too large for real-time discrimination in
the future. Thus, experiments have been designed to examine
the feasibility of reducing the number of nodes in the ANN.

Subject and Experiment

Eleven normal subjects were recruited for this study,
including eight males and three females, with an average age
of 24+3 years. The ring electrode system was placed on their
forearm five centimeters below the elbow. Experiments were
conducted while subjects were standing. During the training
period, each subject was asked to do two hand actions, hand
opening and closing, repeatedly. The EMG signals acquired
during this period were used to establish thresholds and
normalization factors for each channel. After the initial
training period, subjects were asked to carry out the 11 hand
actions 18" times in random order. All EMG signals were
digitized using 2000Hz sampling rate and processed off-line

using MatLab program. Three experiments are used to test the
ability of the proposed system. First, all 42 features are used in
the discrimination test. Second, only one feature from each
channel is used. Third, two features from each channels are
selected and input into the identify system.

Results

The active electrode, its frequency response and the ring
electrode system are illustrated in Figure 2. It is clear that the
active electrode does meet its original design specification. On
the other hand, different EMG patterns during different hand
motions can be clearly identified in the EMG signals that were
acquired using the ring electrode system (Figure 3).

By using the proposed multi-threshold method, action
periods can be reliably sectioned out. Although the detected
starting and ending times may not be precise, the proposed
method does the segmentation without error and uses
minimum computation (Figure 4). After each action period is
determined, six features from each EMG signal were
calculated. Half of the hand actions were used as training data
and the other half were used as test data. In the first
experiment, six features from seven electrodes were input into
the ANN, yielding an average discrimination rate of 93.1%
(Table 1).

When only one feature from each channel was used, the
discrimination rates ranged from 73.2% to 90.4% (Table 2). .
On the other hand, when two features with the highéét':dis- .
crimination rate in the previous results were sel‘ected,; ‘th
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average discriminative rate increased to 86.9% and 90.3%
(Table 3). Additionally, the size of ANN is reduced to 14
inputs, 16 hidden and 11 output nodes.

Discussions and Conclusions

It is demonstrated that the custom-made active electrode
provides clean EMG signals and the proposed ring electrode
system offers a convenient way to acquire multiple EMG
signals for hand actions. Although the determination of
starting and ending times of each action period is not precise,
the proposed multi-threshold method can identify all the action
periods without error. Features extracted from each action
period provide reliable information for discriminating different
hand actions, which can be proved by the high average
discrimination rate for hand and finger actions. However, for
some finger actions, the discrimination rates are lower than the
other actions. This may be because the ring electrode system
was placed too far away from the muscle groups responsible
for these finger actions. Nevertheless, with the aid of this ring
electrode system, the six EMG features may be properly
reduced to only two and still provide a satisfactory
discrimination rate. Additionally, the size of the ANN can be
reduced dramatically from 42%28*11 to 14*16*11 and the
amount of computation is significantly reduced.

To explore other possible situations, two pilot studies
were conducted. When the trained ANN weights of the same
subject were used for trials on the following day, the
discrimination rate dropped to 72%. During these two trials,
the ring electrode system was carefully placed in the same
position to avoid the effect of different electrode placement.
This indicates that, in addition to the electrode placement,
other factors such as the condition of the skin, the speed and
force of the action can affect the accuracy of discrimination.
On the other hand, when the trained weights from one subject
were used by two other subjects, the discrimination rates were
as low as 14% and 42.9%. This indicates that the
between-subject variations are large enough -and cannot be
ignored.

On the other hand, to further increase the discrimination
rates for finger actions, additional electrodes may be needed
near the wrist. Moreover, the current system cannot detect
movements of the upper arm. To identify motions involving
the upper arm, one or more electrodes placed on the upper arm

can help to discriminate the motions of upper arm.
Nevertheless, the results indicate that, with the ring electrode
system and signal processing methods, the proposed system
does provide high discriminative ability for the actions of
fingers, palm, wrist, and forearm. With additional electrodes
and digital signal processor, this system can be further
developed into a real-time hand action identification system
for computer and prosthetic device control.
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