查詢結果分析
來源資料
相關文獻
- 加氫水化學應用於核一、二廠之效果預測
- 核一、二廠反應器功率變化對爐水中水化學的影響預估
- 加氫水化學與鉑覆膜對敏化304不銹鋼之應力腐蝕龜裂之影響
- 貴重金屬化學添加對核一、二廠飼水加氫效果增益研究與預測(1)--理論基礎與模式架構
- 貴重金屬化學添加對核一、二廠飼水加氫效果增益研究與預測(2)--電廠模擬
- 加氫水化學之貴重金屬化學添加效益研究
- 氧化鋅添加對敏化304不銹鋼在模擬沸水式反應器環境中的電化學特性研究
- Fatigue Crack Growth Behavior of Sensitized Type 304 Stainless Steel in Simulated Boiling Water Reactor Environments
- 不同抑制性被覆條件之304不銹鋼在高溫純水環境中的電化學行為研究
- 不同加鋅處理條件之敏化304不銹鋼在模擬沸水式反應器環境中的電化學特性研究
頁籤選單縮合
題 名 | 加氫水化學應用於核一、二廠之效果預測=Predictions of Hydrogen Water Chemistry Effectiveness at Chinshan and Kuosheng |
---|---|
作 者 | 葉宗洸; 王秋蘋; 余明昇; 朱方; 高瑞廷; 黃佳伸; | 書刊名 | 台電工程月刊 |
卷 期 | 594 1998.02[民87.02] |
頁 次 | 頁28-48 |
分類號 | 449.7 |
關鍵詞 | 沸水式反應器; 加氫水化學; 沿晶應力腐蝕龜裂; 輻射促進應力腐蝕龜裂; 電化學腐蝕電位; 裂縫成長速率; Boiling water reactor; Hydrogen water chemistry; Intergranular stress corrosion cracking; Irradiation-assisted stress corrosion cracking; Electrochemical corrosion potential; Crack growth rate; |
語 文 | 中文(Chinese) |
中文摘要 | 本研究係採用電腦模擬方式,針對核一、二廠實施加氫水化學(Hydrogen Water Chemistry, HWC)的效果進行理論分析。分析結果顯示HWC確實能夠有效地保護主熱傳迴 路中的大部分組件:在爐水導電度為0.1μS/㎝時,若欲防止爐心旁通區、再循環系統、以 及下降流區等三個區域遭受應力腐蝕的侵襲,核一廠需採用1.2ppm的飼水注氫量,核二廠 則僅需0.4ppm的注氫量即可。至於爐心下方空間組件的保護,核一廠與核二廠所需的飼水 注氫量也不相同,核一廠的飼水注氫濃度需達1.8ppm才能使整個爐心下方空間的ECP降至 -0.23VSHE的臨界腐蝕電位以下,而核二廠則需要2.3ppm的注氫量方能達到相同的目的。 若以裂縫成長速率的抑低程度做為HWC效益的考量,則不論是核一廠或核二廠均無須超過 1ppm的飼水注氫量,即可將絕大部份主熱傳迴路組件的裂縫成長速率值降為正常水化學狀 態時的五分之一或更低,這樣的結果顯示了HWC部份保護的可行性。 |
英文摘要 | Theoretical analyses on the effectiveness of hydrogen water chemistry (HWC) were performed for the Chinshan and Kuosheng boiling water reactors (BWRs) through computer modeling. Our analyses indicate that HWC will be effective in protecting many components in the primary heat transport circuits (PHTCs) of Chinshan and Kuosheng, including the core bypass, the recirculation system, and much of the lower downcomer at moderate feedwater hydrogen levels (1 to 2 ppm) and coolant conductivity of 0.1 μS/㎝. For protection of the three regions mentioned above, the feedwater hydrogen concentrations must be equal to or higher than 1.2 ppm in Chinshan and 0.4 ppm in Kuosheng. As far as the electrochemical corrosion potential (ECP) in the lower plenum is concemed, 1.8 ppm and 2.3 ppm of hydrogen in the feedwater needed to lower the ECPs below the cirtical corrosion potential at Chinshan and Kuosheng, respectively. On the other hand, if the reduction in crack growth rate (CGR) is employed to assess the effectiveness of HWC, the required feedwater hydrogen concentration may be different. It is predicted that both plants need less than 1 ppm of feedwater hydrogen concentration in order to reduce the CGR in almost the entire PHTC (except a small portion of the core channel region) to one fifth or less of the original value. The CGR result leads to a strong support for the partial protection concept of HWC. |
本系統中英文摘要資訊取自各篇刊載內容。