頁籤選單縮合
| 題 名 | 演算法LLL應用於GNSS相位模稜快速求解=Quick GNSS Carrier-phase Ambiguity Resolution Based on the LLL Algorithm |
|---|---|
| 作 者 | 陳揚仁; 吳究; 謝吉修; | 書刊名 | 航測及遙測學刊 |
| 卷 期 | 14:4 2009.12[民98.12] |
| 頁 次 | 頁277-286 |
| 分類號 | 440.98 |
| 關鍵詞 | 相位模稜; 高相關; 正交化; Ambiguity; High correlation; Orhogonalization; |
| 語 文 | 中文(Chinese) |
| 中文摘要 | 一般而言,全球導航衛星系統載波相位之定位精度較電碼定位高,利用載波相位觀測量進行衛星測量求解位置時,如何快速得到正確的整數相位模稜值,是求解精度與效率的關鍵。但是參數間彼此高相關,會使這個目標變的困難。通常這個問題可藉由衛星之間的幾何構形改變而獲得改善,但是相對的需要花費更多的時間進行觀測。 LLL演算法是一種將問題由高相關域轉換至低相關域的技術。 LLL利用 Gram-Schmidt正交變換產生一具備對角優勢之協方差矩陣,使得數學上的變換能夠達成與幾何變換相同的效果。應用具備對角優勢之協方差矩陣可大幅減少整數相位模稜的候選解。最後將候選解逐一代入觀測式中重新進行平差演算,求取一殘差二次形為最小之解。 |
| 英文摘要 | Generally, the global navigation satellite system carrier-phase is more accurate then the pseudorange. The key point is how to obtain the correct integer ambiguity quickly and efficiently, while using carrier-phase for positioning. However the high correlation between parameters makes it to be difficult. The problem can be improved by the changing of the geometric of satellites. But it needs longer observation time to reach. The LLL algorithm is a technique mapping the parameters from a higher correlation space to a lower correlation space. The LLL algorithm uses the Gram-Schmidt orthogonalization to produce the diagonal covariance matrix. The effects of mathematics changing and the geometric changing can be the same. The number of candidates for integral ambiguity can reduce by using the diagonal covariance matrix. Final, the candidates are inserted into the observation equations to determine the solution again. It is believed that the integer candidate which produces the smallest sum of squares of the residual is the most likely solution we want. |
本系統中英文摘要資訊取自各篇刊載內容。