查詢結果分析
相關文獻
- Applying Metaheuristics in The Generalized Cell Formation Problem Considering Machine Reliability
- 基因演算法在多途程製造系統單元形成之應用研究
- 模擬退火法在多途程的製造單元分群之應用研究
- 結合基因演算法和模擬退火法在機組排程決策之應用
- 應用柔性演算法於航太鋁合金銲接參數最佳化之研究
- 非線性微波電路之全域分析及其效能之研究
- 模擬退火法結合禁忌搜尋演算法求解協同配送問題
- Hybrid Genetic Algorithm/Fuzzy System, Simulated Annealing and Tabu Search for Short-Term Thermal Generating Unit Commitment
- 結合基因演算法與模擬退火法於多重DNA序列之比對
- 都市計畫草圖替選方案分析模式之實例研究
頁籤選單縮合
| 題 名 | Applying Metaheuristics in The Generalized Cell Formation Problem Considering Machine Reliability=應用通用啟發式演算法於考慮機器可靠度之一般化單元形成問題 |
|---|---|
| 作 者 | Jabalameli, Mohammad Saeed; Arkat, Jamal; Sakri, Morad Shoresh; | 書刊名 | 工業工程學刊 |
| 卷 期 | 25:4 2008.07[民97.07] |
| 頁 次 | 頁261-274 |
| 分類號 | 448.947 |
| 關鍵詞 | 單元形成; 可替代的途程路徑; 機器可靠度; 記憶式演算法; 基因演算法; 模擬退火法; Cell formation; Alternative process routings; Machines reliability; Memetic algorithm; Genetic algorithm; Simulated annealing; |
| 語 文 | 英文(English) |
| 中文摘要 | 機器是單元製造系統中主要元件。通常,它要快速處理因應生產需要的機器停工是極為困難的。因此,可靠度對於單元製造系統的整理績效扮演一個重要的角色。我們呈現一個具有可替代的途程路徑和機器可靠度考量的單元形成問題之數學模型並建議之嘗試同時考慮極小化單元間的移動成本及極大化製造系統的可靠度。除此之外,我們發展出三種稱為模擬退火法、基因演算法和記憶式演算法的通用啟發式演算法來求解這個問題。我們使用了一些數學範例,並應用一種稱為分支界限化的最佳化演算法來比較所發展的演算法之效率。結果顯示,與分支界限法相比較,所發展出來的通用啟發式演算法可以使用較少的計算時間,並得到不錯的目標函數值。 |
| 英文摘要 | Machines are the major component of the cellular manufacturing systems (CMS). Usually, it is difficult to handle machine breakdowns as quickly as the production requirement dictates and therefore, the reliability consideration plays an important role in the overall performance of the CMS. We present a mathematical model of the cell formation problem with alternative process routings (APR) and machine reliability consideration. The proposed model tries to simultaneously minimize the intercellular movement costs and to maximize the reliability of the manufacturing system. In addition, we develop three sets of metaheuristics, namely simulated annealing, genetic algorithm and memetic algorithm to solve the proposed model. Using some numerical examples, we compare the performance of the proposed algorithms with an optimum algorithm, namely the branch and bound algorithm. The results show that in comparison with the branch and bound algorithm, the proposed metaheuristics can obtain better objective function values in less computational time. |
本系統中英文摘要資訊取自各篇刊載內容。