查詢結果分析
來源資料
相關文獻
- 休閒渡假區遊憩設施配置規劃之決策支援--使用退火神經網路
- A Computer-Based Medical Decision Support Tool for Treatment Risk Analysis
- 基於乏晰並行工程之企業接單可行性評估決策支援系統研究
- 以衍生型均值退火神經網路作短期水火力發電調度
- 中國大陸的經濟學研究與總體經濟決策支援系統
- 人工神經網路應用於固定遊憩區旅遊路線規劃之初探
- 多準則決策技術與地理資訊系統整合之研究
- 決策支援系統模組要素分析研究--以美商UPS郵件快遞公司為例
- The State of the Art of Expert Systems in Accounting
- 以馬可夫鏈探討雛型法決定資訊需求之適應性過程:以決策支援系統為例
頁籤選單縮合
| 題 名 | 休閒渡假區遊憩設施配置規劃之決策支援--使用退火神經網路=Decision-Support on Allocation of Recreation Constructions in Resort Areas--Using an Annealed Neural Network |
|---|---|
| 作 者 | 李明儒; 黃國光; 吳政隆; | 書刊名 | 澎技學報 |
| 卷 期 | 8 2004.12[民93.12] |
| 頁 次 | 頁155-177 |
| 分類號 | 992.3 |
| 關鍵詞 | 退火神經網路; 渡假區規劃; 遊憩設施配置; 決策支援; Annealed neural network; Resort planning; Recreation construction allocation; Decision support; |
| 語 文 | 中文(Chinese) |
| 中文摘要 | 本研究將退火神經網路運用於休閒渡假區遊憩設施配置規劃上,並以C語言來完成退火神經網路模組的建立且產生規劃方案,以支援相關人員在休閒遊憩區規劃之初於空間配置上決策的進行,並評估其效能。 本研究的進行步驟分成兩個階段,第一階段為蒐集休閒渡假區空間規劃的相關實徵資料並量化,據以確定休閒渡假區遊憩設施配置規劃的內涵,即決定兩兩遊憩設施區域間的相對關係、遊憩設施區域對於休閒渡假區內各不同遊憩設施的關係、及兩兩遊憩設施間關係的加權。本研究的第二個階段為建構休閒渡假區遊憩設施空間規劃的類神經網路模組,並依據第一個階段中所蒐集到的數據來做為類神經網路模組的輸入資料。 在研究結果中發現,退火神經網路模組可以很有效率地產生趨近於最佳解的規劃方案,解決類似的複雜規劃問題,並順利提供規劃方案做為相關人員於規劃階段時的參考依據。 |
| 英文摘要 | The purpose of this research was to use the annealed neural network in the planning of recreational constructions in resort areas, we implemented an annealed neural network model by C language to support the people related to recreational constructions space planning in decision-making procedures, and to evaluate the effectiveness of the neural network model. This research was separated into two stages. In order to obtain the detailed data about recreational constructions planning in resort area, the research started with the data collection and analysis procedures and the theory they were based on. In the first stage, the pair-wise relation between areas, the pair-wise relation between resort areas and recreational constructions, and the pair-wise relation between recreational constructions were collected. In the second stage, we built the annealed neural network model based on the data we collected in the first stage. To some extent, we found that the annealed neural network model could generate the solution near the optimal one effectively, which would solve the complicated planning-like problem, and provide the suggestions to the people when they were planning the recreational constructions in resort areas. |
本系統中英文摘要資訊取自各篇刊載內容。