查詢結果分析
相關文獻
- A Heuristic Algorithm to Minimize Total Weighted Tardiness on a Single Machine with Release Dates and Sequence-Dependent Setup Times
- Bicriteria Dynamic Scheduling in Multi-Machine Flowshop
- 雙機流程型工廠動態排程之研究
- 具有迴流特性零工工廠動態排程之研究
- 能源使用、能源效率與CO2排放之關聯性分析
- 第二煉鋼廠動態生產排程電腦系統
- 城際客運轉運系統路線設計之研究
- 以遺傳演算法為基礎之二部機器以上排序法之最佳化
- 數學規劃法於森林經營上之應用--從林木經營到生態系經營
- Minimizing the Makespan in a Single Machine Scheduling Problem with a Flexible Maintenance
頁籤選單縮合
| 題 名 | A Heuristic Algorithm to Minimize Total Weighted Tardiness on a Single Machine with Release Dates and Sequence-Dependent Setup Times=考量順序相依整備時間下之動態單機排程 |
|---|---|
| 作 者 | 張子筠; 周富得; 李慶恩; | 書刊名 | 工業工程學刊 |
| 卷 期 | 21:3 2004.05[民93.05] |
| 頁 次 | 頁289-300 |
| 分類號 | 494.542 |
| 關鍵詞 | 單機排程; 動態排程; 加權延遲時間; 啟發式方法; 數學規劃法; Single machine; Total weighted tardiness; Release dates; Setup times; |
| 語 文 | 英文(English) |
| 中文摘要 | 在生產線的排程問題中,每一機臺前的待排工件大多是動態到達,且每一工件的重要性或急迫性常隨該產品在市場上的價格、合約、客戶的重要性與未來可能的合作關係等因素而有不同的權重。越是重要的訂單,越不允許延遲交貨(Tardy)的狀況發生,否則伴隨而來的各項違約成本與商譽損失,都將造成公司營運上有形或無形的損失。基於此,本文以總加權延遲時間(Total Weighted Tardiness)最小化為目標,針對過去文獻較少探討但又是生產環境必須時時面對的動態單機排程問題,同時考量順序相依之機器整備時間(sequence-dependent setup times) ,提出一複雜度為O(n3)之啟發式排程演算法,並建構一數學規劃模式作為評估此啟發式排程演算法成效的基準。在短時間內提供管理者一個滿意解的效率要求下,本文所提出之啟發式排程演算法能作為有效的排程輔助工具。 |
| 英文摘要 | This paper attempts to solve a single machine scheduling problem (n│1︱ri, sij︱SwiTi), in which the objective function is to minimize the total weighted tardiness with different release dates and sequence-dependent setup times. There is not a mathematical programming or a heuristic method for this type of problem up to now. In this study, we propose a heuristic scheduling algorithm with the complexity of O(n3) to solve this problem. To validate the performance of the heuristic proposed herein, a mathematical programming with logical constraints model is also formulated. Experimental results show that this algorithm can find 10321 optimal solutions out of 12600 randomly generated problems. Total average solution quality is 98.03%. A 11-Job case (large problem) requires only 0.00065 seconds, on average, to obtain an ultimate solution. The results demonstrate that the heuristic scheduling algorithm can efficiently solve this kind of problem. |
本系統中英文摘要資訊取自各篇刊載內容。